[1]
M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys. Fundamentals and Applications, Springer International Publishing: Cham, Switzerland, (2016).
Google Scholar
[2]
A.D. Pogrebnyak, A.A. Bagdasaryan, I.V. Yakushchenko, V.M. Beresnev, The structure and properties of high-entropy alloys and nitride coatings based on them, Russian Chemical Reviews. 83(11) (2014) 1027-1061.
DOI: 10.1070/rcr4407
Google Scholar
[3]
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Entropy-stabilized oxides, Nature Communications, 6 (2015) 84-85.
DOI: 10.1038/ncomms9485
Google Scholar
[4]
D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Colossal dielectric constant in high entropy oxides, Rapid Research Letters, 10(4) (2016) 328-333.
DOI: 10.1002/pssr.201600043
Google Scholar
[5]
A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, S.S. Bhattacharya, Nanocrystalline multicomponent entropy stabilised transition metal oxides, Journal of the European Ceramic Society, 37(2) (2017) 747-754.
DOI: 10.1016/j.jeurceramsoc.2016.09.018
Google Scholar
[6]
D. Berardan, S. Franger, A.K. Meena, N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides, Journal of Materials Chemistry A, 4 (2016) 9536-9541.
DOI: 10.1039/c6ta03249d
Google Scholar
[7]
Z. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.-P. Maria, D.W. Brenner, Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations, Journal of Applied Physics, 120(9) (2016).
DOI: 10.1063/1.4962135
Google Scholar
[8]
C.M. Rost, Z. Rak, D.W. Brenner, J.-P. Maria, Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study, Journal of the American Ceramic Society, 100(6) (2017) 2732-2738.
DOI: 10.1111/jace.14756
Google Scholar
[9]
D. Berardan, A.K. Meena, S. Franger, C. Herrero, N. Dragoe, Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides, Journal of Alloys and Compounds, 704 (2017) 693-700.
DOI: 10.1016/j.jallcom.2017.02.070
Google Scholar
[10]
A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya, H. Hahn, R.R. Djenadic, Multicomponent equiatomic rare earth oxides with narrow band gap and associated praseodymium Multivalency, Dalton Trans., 36 (2017) 12167-12176.
DOI: 10.1039/c7dt02077e
Google Scholar
[11]
R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V.S.K. Chakravadhanula, Ch. Kübel, S.S. Bhattacharya, A.S. Gandhi, H. Hahn, Multicomponent equiatomic rare earth oxides, Materials Research Letters, 5 (2017) 102-109.
DOI: 10.1080/21663831.2016.1220433
Google Scholar
[12]
M.-I. Lin, M.-H..Tsai, W.-J. Shen, J.-W. Yeh. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films, Thin Solid Films, 518 (2010) 2732-2737.
DOI: 10.1016/j.tsf.2009.10.142
Google Scholar
[13]
Ch.-H. Tsau, Zh.-Y. Hwang, S.-K. Chen, The microstructures and electrical resistivity of (Al,Cr,Ti)FeCoNiOx high-entropy alloy oxide thin films, Advances in Materials Science and Engineering, 6 (2015).
DOI: 10.1155/2015/353140
Google Scholar
[14]
J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure, Materials Letters, 216 (2018) 32-36.
DOI: 10.1016/j.matlet.2017.12.148
Google Scholar
[15]
S. Jiang, T. Hu , J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, A new class of high-entropy perovskite oxides, Scripta Materialia, 142 (2018) 116-120.
DOI: 10.1016/j.scriptamat.2017.08.040
Google Scholar
[16]
A. Sarkar, R. Djenadic, D.Wang, Ch. Hein, R. Kautenburger, O. Clemens, H. Hahn, Rare earth and transition metal based entropy stabilized perovskite type oxides, Journal of the European Ceramic Societ, 38(5) (2018) 2318-2327.
DOI: 10.1016/j.jeurceramsoc.2017.12.058
Google Scholar
[17]
R. C. Pullar. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science, 57 (2012) 1191-1334.
DOI: 10.1016/j.pmatsci.2012.04.001
Google Scholar
[18]
D.A. Vinnik, I.A. Ustinova, A.B. Ustinov, S.A. Gudkova, D.A. Zherebtsov, E.A. Trofimov, N.S. Zabeivorota, G.G. Mikhailov, R. Niewa, Millimeter-wave characterization of aluminum substituted barium lead hexaferrite single crystals grown from PbO-B2O3 flux, Ceramics International, 17 (2017) 15800-15804.
DOI: 10.1016/j.ceramint.2017.08.145
Google Scholar
[19]
D.S. Klygach, M.G. Vakhitov, D.A. Vinnik, A.V. Bezborodov, S.A. Gudkova, V.E. Zhivulin, D.A. Zherebtsov, C.P. SakthiDharan, S.V. Trukhanov, A.V. Trukhanov, A.Y. Starikov, Measurement of permittivity and permeability of barium hexaferrite, Journal of Magnetism and Magnetic Materials, 465 (2018) 290-294.
DOI: 10.1016/j.jmmm.2018.05.054
Google Scholar
[20]
A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L.Y. Matzui, E.L. Trukhanova, S.V. Trukhanov, Control of electromagnetic properties in substituted M-type hexagonal ferrites, Journal of Alloys and Compounds, 754 (2018) 247-256.
DOI: 10.1016/j.jallcom.2018.04.150
Google Scholar