Preparation of Poly-Substituted Crystals with M-Type Hexa-Ferrite Structure Using Melts of the BaO-PbO-SrO-CaO-ZnO-Fe2O3-Mn2O3-Al2O3 System

Article Preview

Abstract:

The paper presents the experimental study results of a multicomponent phase with M-type hexaferrite structure obtaining. The synthesis method of the BaO–PbO–SrO–CaO–ZnO–Fe2O3–Mn2O3–Al2O3 system melt was used. As a result of the study, microcrystalline octahedral and hexagonal phases were found in the crystallized sample. The hexagonal one, judging by the chemical composition, is a multicomponent phase with the structure of M-type hexaferrite (Ba/Sr/Ca) (Fe/Mn/Al)12O19, which is characterized (judging by the concentrations of the components) by rather high values of configurational mixing entropy. It was shown that lead is practically absent in the crystallized phase composition. The zinc content is unstable. Obviously, lead oxide in used experimental conditions, goes into the composition of the gas phase. The question of the possibility of using zinc as a component of the hexaferrite phase deserves further careful study.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

275-280

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys. Fundamentals and Applications, Springer International Publishing: Cham, Switzerland, (2016).

Google Scholar

[2] A.D. Pogrebnyak, A.A. Bagdasaryan, I.V. Yakushchenko, V.M. Beresnev, The structure and properties of high-entropy alloys and nitride coatings based on them, Russian Chemical Reviews. 83(11) (2014) 1027-1061.

DOI: 10.1070/rcr4407

Google Scholar

[3] C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Entropy-stabilized oxides, Nature Communications, 6 (2015) 84-85.

DOI: 10.1038/ncomms9485

Google Scholar

[4] D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Colossal dielectric constant in high entropy oxides, Rapid Research Letters, 10(4) (2016) 328-333.

DOI: 10.1002/pssr.201600043

Google Scholar

[5] A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, S.S. Bhattacharya, Nanocrystalline multicomponent entropy stabilised transition metal oxides, Journal of the European Ceramic Society, 37(2) (2017) 747-754.

DOI: 10.1016/j.jeurceramsoc.2016.09.018

Google Scholar

[6] D. Berardan, S. Franger, A.K. Meena, N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides, Journal of Materials Chemistry A, 4 (2016) 9536-9541.

DOI: 10.1039/c6ta03249d

Google Scholar

[7] Z. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.-P. Maria, D.W. Brenner, Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations, Journal of Applied Physics, 120(9) (2016).

DOI: 10.1063/1.4962135

Google Scholar

[8] C.M. Rost, Z. Rak, D.W. Brenner, J.-P. Maria, Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study, Journal of the American Ceramic Society, 100(6) (2017) 2732-2738.

DOI: 10.1111/jace.14756

Google Scholar

[9] D. Berardan, A.K. Meena, S. Franger, C. Herrero, N. Dragoe, Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides, Journal of Alloys and Compounds, 704 (2017) 693-700.

DOI: 10.1016/j.jallcom.2017.02.070

Google Scholar

[10] A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya, H. Hahn, R.R. Djenadic, Multicomponent equiatomic rare earth oxides with narrow band gap and associated praseodymium Multivalency, Dalton Trans., 36 (2017) 12167-12176.

DOI: 10.1039/c7dt02077e

Google Scholar

[11] R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V.S.K. Chakravadhanula, Ch. Kübel, S.S. Bhattacharya, A.S. Gandhi, H. Hahn, Multicomponent equiatomic rare earth oxides, Materials Research Letters, 5 (2017) 102-109.

DOI: 10.1080/21663831.2016.1220433

Google Scholar

[12] M.-I. Lin, M.-H..Tsai, W.-J. Shen, J.-W. Yeh. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films, Thin Solid Films, 518 (2010) 2732-2737.

DOI: 10.1016/j.tsf.2009.10.142

Google Scholar

[13] Ch.-H. Tsau, Zh.-Y. Hwang, S.-K. Chen, The microstructures and electrical resistivity of (Al,Cr,Ti)FeCoNiOx high-entropy alloy oxide thin films, Advances in Materials Science and Engineering, 6 (2015).

DOI: 10.1155/2015/353140

Google Scholar

[14] J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure, Materials Letters, 216 (2018) 32-36.

DOI: 10.1016/j.matlet.2017.12.148

Google Scholar

[15] S. Jiang, T. Hu , J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, A new class of high-entropy perovskite oxides, Scripta Materialia, 142 (2018) 116-120.

DOI: 10.1016/j.scriptamat.2017.08.040

Google Scholar

[16] A. Sarkar, R. Djenadic, D.Wang, Ch. Hein, R. Kautenburger, O. Clemens, H. Hahn, Rare earth and transition metal based entropy stabilized perovskite type oxides, Journal of the European Ceramic Societ, 38(5) (2018) 2318-2327.

DOI: 10.1016/j.jeurceramsoc.2017.12.058

Google Scholar

[17] R. C. Pullar. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science, 57 (2012) 1191-1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[18] D.A. Vinnik, I.A. Ustinova, A.B. Ustinov, S.A. Gudkova, D.A. Zherebtsov, E.A. Trofimov, N.S. Zabeivorota, G.G. Mikhailov, R. Niewa, Millimeter-wave characterization of aluminum substituted barium lead hexaferrite single crystals grown from PbO-B2O3 flux, Ceramics International, 17 (2017) 15800-15804.

DOI: 10.1016/j.ceramint.2017.08.145

Google Scholar

[19] D.S. Klygach, M.G. Vakhitov, D.A. Vinnik, A.V. Bezborodov, S.A. Gudkova, V.E. Zhivulin, D.A. Zherebtsov, C.P. SakthiDharan, S.V. Trukhanov, A.V. Trukhanov, A.Y. Starikov, Measurement of permittivity and permeability of barium hexaferrite, Journal of Magnetism and Magnetic Materials, 465 (2018) 290-294.

DOI: 10.1016/j.jmmm.2018.05.054

Google Scholar

[20] A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L.Y. Matzui, E.L. Trukhanova, S.V. Trukhanov, Control of electromagnetic properties in substituted M-type hexagonal ferrites, Journal of Alloys and Compounds, 754 (2018) 247-256.

DOI: 10.1016/j.jallcom.2018.04.150

Google Scholar