[1]
A.N. Lopanov, E.A. Fanina, O.N. Guzeeva, Cement-quartz electrically conductive composites based on graphite dispersions, ARPN Journal of Engineering and Applied Sciences, 9(11) (2014) 2250-2253.
Google Scholar
[2]
A.Yu. Semeykin, K.V. Tikhomirova, Modeling of functional parameters of electrically conductive composites based on Portland cement and carbon materials, in: Youth and scientific and technical progress: Proceedings of VIII International Scientific and Practical Conference, vol. 3, Ltd «Assistant Plus», Stary Oskol, 2015, pp.241-245.
Google Scholar
[3]
S. Wu, P. Wang, B. Li, L. Pang, F. Guo, Study on mechanical and thermal properties of graphite modified cement concrete, Key Engineering Materials, 599 (2014) 84-88.
DOI: 10.4028/www.scientific.net/kem.599.84
Google Scholar
[4]
J.-H. Shi, J.-G. Zhao, R. Zhao, S.-Q. Hu, Y. Guo, Preparation and property of conductive cement composite for grounding module, Zhongbei Daxue Xuebao (Ziran Kexue Ban)/Journal of North University of China (Natural Science Edition), 35(2) (2014) 157-160.
Google Scholar
[5]
D. Frattini, G. Accardo, C. Ferone, R. Cioffi, Fabrication and characterization of graphite-cement composites for microbial fuel cells applications, Materials Research Bulletin, 88 (2017) 188-199.
DOI: 10.1016/j.materresbull.2016.12.037
Google Scholar
[6]
S. K. Yee, M.Z.B. Mohd Jenu, Electromagnetic shielding of cement-graphite powder between 100 to 2000 MHz, ARPN Journal of Engineering and Applied Sciences, 10(18) (2015) 8404-8407.
Google Scholar
[7]
J. Cao, D.D.L. Chung, Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding, Cement and Concrete Research, 33(11) (2003) 1737-1740.
DOI: 10.1016/s0008-8846(03)00152-2
Google Scholar
[8]
C. Huang, Q. Wang, P. Song, The effects of graphite on the mechanical and thermal properties of cement pastes, in: Material Science and Engineering – Proceedings of the 3rd Annual International Conference on Material Science and Engineering, ICMSE (2015) 463-468.
DOI: 10.1201/b21118-99
Google Scholar
[9]
A.N. Lopanov, I.V. Prushkovsky, O.N. Guzeeva, K.V. Tikhomirova, Technology of electrically conductive composites of alkaline earth metals carbonates and carbon dispersions, ARPN Journal of Engineering and Applied Sciences, 9(11) (2014) 2275-2278.
Google Scholar
[10]
A.N. Lopanov, E.A. Fanina, K.D. Nikolaevich, Electrical conductivity and aggregation of carbon nanotubes in a heterogeneous system based on cement, Middle East Journal of Scientific Research, 17(8) (2013) 1194-1199.
Google Scholar
[11]
D.-Y. Yoo, I. You, S.-J. Lee, Electrical properties of cement-based composites with carbon nanotubes, graphene, and graphite nanofibers, Sensors, 17(5) (2017) 1064.
DOI: 10.3390/s17051064
Google Scholar
[12]
D.-Y. Yoo, I. You, H. Youn, S.-J. Lee, Electrical and piezoresistive properties of cement composites with carbon nanomaterials, Journal of Composite Materials, 52(24) (2018) 3325-3340.
DOI: 10.1177/0021998318764809
Google Scholar
[13]
J. Wei, Q. Zhang, L. Zhao, L. Hao, Z. Nie, Effect of moisture on the thermoelectric properties in expanded graphite/carbon fiber cement composites, Ceramics International, 43(14) (2017) 10763-10769.
DOI: 10.1016/j.ceramint.2017.05.088
Google Scholar
[14]
B. Nešpor, M. Nejedlík, Development of electrically conductive composite sensors with the addition of functional fillers, Solid State Phenomena, 272 (2018) 34-40.
DOI: 10.4028/www.scientific.net/ssp.272.34
Google Scholar
[15]
M. Chen, P. Gao, F. Geng, L. Zhang, H. Liu, Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure, Construction and Building Materials, 142 (2017) 320-327.
DOI: 10.1016/j.conbuildmat.2017.03.048
Google Scholar
[16]
B. Han, X. Yu, J. Ou, Self-sensing concrete in smart structures. Elsevier, (2014).
Google Scholar
[17]
K. Loamrat, M. Sappakittipakorn, P. Sukontasukkul, Electrical resistivity of cement-based sensors under a sustained load, Advanced Materials Research, 931-932 (2014) 436-440.
DOI: 10.4028/www.scientific.net/amr.931-932.436
Google Scholar
[18]
N. Flores Medina, M. del Mar Barbero-Barrera, F. Jové-Sandoval, Improvement of the mechanical and physical properties of cement pastes and mortars through the addition isostatic graphite, Construction and Building Materials, 189 (2018) 898-905.
DOI: 10.1016/j.conbuildmat.2018.09.055
Google Scholar
[19]
A. Khalid, R.A. Khushnood, S. Saleem, S.Z. Farooq, N. Shaheen, Improving the mechanical properties of cementitious composites with graphite nano/micro platelets addition, IOP Conference Series: Materials Science and Engineering, 431 (6) (2018) 0620051.
DOI: 10.1088/1757-899x/431/6/062005
Google Scholar
[20]
A.N. Lopanov, E.A. Fanina, K.V. Tikhomirova, Calculation of the free surface energy of coals from the Donets basin and graphites, Solid Fuel Chemistry 52(1) (2018) 15-20.
DOI: 10.3103/s0361521918010068
Google Scholar