Production of Hybrid Polymer-Oxide Materials Based on Molybdenum Oxide Compounds Using Transient Electrolysis Method

Article Preview

Abstract:

Сatalytically active hybrid polymer-oxide material, based on molybdenum oxide compounds with iron group (Fe, Ni, Co) metals and polyvinyl-pyrrolidone, is obtained by method of transient electrolysis. Surface morphology and elemental composition of the obtained hybrid polymer-oxide material are examined with an electron microscopy and X-ray micro-fluorescent microanalysis; its phase composition and its chemical bonds structure formation between metal oxide compounds and polymer macromolecules are determined by X-ray phase analysis and IR spectroscopy. High catalytic activity of the obtained hybrid polymer-oxide material in the model reaction of hydrogen peroxide decomposition by the gaso-metric method is shown, which allows us to conclude that it is possible to use the obtained hybrid polymer-oxide materials as catalysts for wastewater treatment to purify it from organic and inorganic impurities.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

316-320

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Herney-Ramireza, Miguel A. Vicenteb, Luis M. Madeirac, Heterogeneous Photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review, Applied Catalysis B: Environmental. 98 (2010) 10-26.

DOI: 10.1016/j.apcatb.2010.05.004

Google Scholar

[2] A.Z.M. Badruddoza, A.S.H. Tay, P.Y. Tan, K. Hidajat, M.S. Uddin, Carboxymethyl-b-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies, J. Hazard. Mater. 185 (2011) 1177-1186.

DOI: 10.1016/j.jhazmat.2010.10.029

Google Scholar

[3] A.Z.M. Badruddoza, Z.B.Z. Shawon, W.J.D. Tay, K. Hidajat, M.S. Uddin, Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater, Carbohydr. Polym, 91 (2013) 322-332.

DOI: 10.1016/j.carbpol.2012.08.030

Google Scholar

[4] A.Z.M. Badruddoza, Z.B.Z. Shawon, D.W.J. Tay, K. Hidajat, M.S. Uddin, Endocrine disrupters and toxic metal ions removal by carboxymethyl-b-cyclodextrin polymer grafted onto magnetic nanoadsorbents, J. Chem. Eng. 27 (1) (2013) 69-73.

DOI: 10.3329/jce.v27i1.15862

Google Scholar

[5] S.S. Banerjee, D.-H. Chen, Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent, J. Hazard. Mater. 147 (2007) 792-799.

DOI: 10.1016/j.jhazmat.2007.01.079

Google Scholar

[6] A. Bee, D. Talbot, S. Abramson, V. Dupuis, Magnetic alginate beads for Pb(II) ions removal from wastewater, J. Colloid Interface Sci. 362 (2011) 486-492.

DOI: 10.1016/j.jcis.2011.06.036

Google Scholar

[7] A. Bibak, Cobalt, copper, and manganese adsorption by aluminium and iron oxides and humic acid, Commun. Soil Sci. Plant Anal. 25 (1994) 3229-3239.

DOI: 10.1080/00103629409369261

Google Scholar

[8] L.M. Blaney, S. Cinar, A.K. Sengupta, Hybrid anion exchanger for trace phosphate removal from water and wastewater, Water Res. 41 (2007) 1603-1613.

DOI: 10.1016/j.watres.2007.01.008

Google Scholar

[9] M. Carotenuto, G. Lofrano, A. Siciliano, F. Aliberti, M. Guida, TiO2 photocatalytic degradation of caffeine and ecotoxicological assessment of oxidation by-products, Glob. Nest J. 16 (3) (2014) 265-275.

Google Scholar

[10] Y.-C. Chang, D.-H. Chen, Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) Ions, J. Colloid Interface Sci. 283 (2005) 446 – 451.

DOI: 10.1016/j.jcis.2004.09.010

Google Scholar

[11] J.H. Jang, H.Y. Choi, G.B. Han, Production of dry oxidant through catalytic H2O2 decomposition over Mn-based catalysts for NO oxidation, Clean Technology. 21 (2015) 130-139.

DOI: 10.7464/ksct.2015.21.2.130

Google Scholar

[12] S.L. Sharifi, M.H. Hosseini, A. Mirzaei, A.S. Oskuloo, Catalytic Decomposition of Hydrogen Peroxide in the Presence of Synthesized Iron-Manganese oxide Nanocomposites via Different Methods, Int. J. Nanotechnol. 11 (4) (2015) 233-240.

Google Scholar

[13] K. Nakamura, Y. Oaki, H. Imai, Monolayered Nanodots of Transition Metal Oxides, J. Am. Chem. Soc. 135 (11) (2013) 4501-4508.

DOI: 10.1021/ja400443a

Google Scholar

[14] Q.L. Zhu, Q. Xu, Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications: Review, Chem. 1 (2016) 220-245.

DOI: 10.1016/j.chempr.2016.07.005

Google Scholar

[15] S.Chr. Turmanova, I.V. Dimitrov, E.D. Ivanova, K.G. Vassilev, Complexes of Hybrid Copolymers with Heavy Metals: Preparation, Properties and Application as Catalysts for Oxidation, Polym. Bull. 72 (6) (2015) 1301-1317.

DOI: 10.1007/s00289-015-1338-z

Google Scholar

[16] A. Mostafaei, F. Nasirpouri, Epoxy/polyaniline-ZnO nanorods hybrid nanocomposite coatings: Synthesis, characterization and corrosion protection performance of conducting paints, Progress in Organic Coatings. 77 (2014) 146-159.

DOI: 10.1016/j.porgcoat.2013.08.015

Google Scholar

[17] R.B. Figueira, I.R. Fontinha, C.J.R. Silva, E.V. Pereira, Hybrid Sol-Gel Coatings: Smart and Green Materials for Corrosion Mitigation: Review, Coatings. 6 (12) (2016) 19.

DOI: 10.3390/coatings6010012

Google Scholar

[18] Q. Zheng, Z. Cai, Z. Ma, S. Gong, Cellulose Nanofibril/Reduced Graphene Oxide/Carbon Nanotube Hybrid Aerogels for Highly Flexible and All-Solid-State Supercapacitors, ACS Appl. Mater. Interfaces. 7 (5) (2015) 3263-3271.

DOI: 10.1021/am507999s

Google Scholar

[19] M.A. Hood, M. Mari, R. Munoz-Espi, Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles, Materials. 7 (2014) 4057-4087.

DOI: 10.3390/ma7054057

Google Scholar

[20] S.Ya. Grikhiles, K.I. Tikhonov, Elektroliticheskie i khimicheskie pokrytiya: Teoriya i praktika [Electrolytic and Сhemical Сoatings. Theory and Practice]. Leningrad: Khimiya, (1990).

Google Scholar

[21] K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticles synthesis. Dalton Transactions, Royal Society of Chemistry. 44 (41) (2015) 17883-17905.

DOI: 10.1039/c5dt02964c

Google Scholar

[22] K. Sivaiah, B.H. Rudramadevi, S. Buddhudu, G.B. Kumar, A. Varadarajulu, Structural, thermal and optical properties of Cu2+ and Co2+: PVP polymer films, Indian Journal of Pure & Applied Physics. 48 (2010) 658-662.

Google Scholar

[23] T.K. Atanasyan, I.G. Gorichev, E.A. Yakusheva, Neorganicheskaya khimiya: Poverkhnostnye yavleniya na granitse oksid/electrolit v kislykh sredakh: Uchebnoe posobie [Inogranic chemistry: Part I. Surface phenomena at the boundary oxide/electrolyte in an acid medium: study guide]. Moscow: Prometei, (2013).

Google Scholar