[1]
D. Barraclough, H. Whittaker, K. Nair, Effect of Specimen Geometry on Hot Torsion Test Results for Solid and Tubular Specimens, Journal of Testing and Evaluation. 3-1 (1973) 220-226.
DOI: 10.1520/jte10007j
Google Scholar
[2]
A. Johansen, B. Ronning, N. Ryum, Comparison of solid and tubular specimens in hot torsion testing of an aluminum alloy, Aluminum Alloys, Proceedings of ICAA-6. 1 (1988) 559-594.
Google Scholar
[3]
H.-Ch. Wu, Zh. X., Paul, T. Wang, Torsion test of aluminium in the large strain range, International Journal of Plasticity. 13 (1997) 873-892.
DOI: 10.1016/s0749-6419(97)00064-8
Google Scholar
[4]
Mr. Rajkumar, D. Patil1, P.N. Gore, Review the Effect of Specimen Geometry on Torsion Test Results, International Journal of Innovative Research in Science, Engineering and Technology. 12-(2013) 7567-7574.
Google Scholar
[5]
Sh. Khoddam, Y.C. Lam and P.F. Thomson, The effect of the geometry of hot torsion test specimens on the accuracy of the constitutive equation, Steel Research. 2-66 (1995) 45-49.
DOI: 10.1002/srin.199501086
Google Scholar
[6]
A. Graber, K. Pohlandt, State of the art of the torsion test for determining flow curves, Steel Research. 5-61 (1990) 212-218.
DOI: 10.1002/srin.199000334
Google Scholar
[7]
Sh. Khoddam, Y.C. Lam, P.F. Thomson, A method of finding the effective length of the specimen used in the hot torsion test and recommendations on geometry of the test specimen, Journal of Testing and Evaluation. 2-26 (1998) 157–167.
DOI: 10.1520/jte11987j
Google Scholar
[8]
Sh. Khoddam, Variations of effective length of the hot torsion test specimen with deformation, Journal of Materials Processing Technology. 177 (2006) 465–468.
DOI: 10.1016/j.jmatprotec.2006.03.215
Google Scholar
[9]
B. Mirzakhani, H. Arabi, M. T. Salehi, S. H. Seyedein, M. R. Aboutalebi, Sh. Khoddam and A. Mohammadi, Computer aided optimization of specimen geometry of hot torsion test to minimize microstructure non homogeneity and temperature gradient before deformation, Iranian Journal of Materials Science & Engineering. 3-6 (2009) 35-43.
DOI: 10.1016/s1006-706x(10)60069-6
Google Scholar
[10]
B. Mirzakhani, Sh. Khoddam, H. Arabi, M.T. Salehi, J. Sietsma, A coupled Thermal-mechanical FE Model of Flow Localization during the Hot Torsion Test, Steel Research International. 11 (2009) 846-584.
Google Scholar
[11]
B. Mirzakhani, Sh. Khoddam, H. Arabi [at all], Influence of Specimen Geometry of Hot Torsion Test on Temperature Distribution During Reheating Treatment of API-X70, Journal of iron and steel research international. 17-3 (2010) 34-39.
DOI: 10.1016/s1006-706x(10)60069-6
Google Scholar
[12]
J.J. Jonas, C. Ghosh, L.S. Toth. The equivalent strain in high pressure torsion, Materials Science & Engineering. 607 (2014) 530-535.
DOI: 10.1016/j.msea.2014.04.046
Google Scholar
[13]
V.L. Kolmogorov, Mekhanika obrabotki metallov davleniem, UPI, Sverdlovsk, (1981).
Google Scholar
[14]
S. Onaka, A comparison of the von Mises and Hencky equivalent strains for use in simple shear experiments, Philosophical Magazine. 18-92 (2012) 2264-2271.
DOI: 10.1080/14786435.2012.671551
Google Scholar
[15]
M.V. Erpalov, Examination of Hardening Curves Definition Methods in Torsion Test, Solid State Phenomena. 284 (2018) 598-604.
DOI: 10.4028/www.scientific.net/ssp.284.598
Google Scholar
[16]
D.A. Pavlov, M.V. Erpalov, Investigation of the influence of material properties on the inhomogeneity of deformation during lengthwise rolling of tubes on a stub mandrel, 10-1 (2018) 17-21.
DOI: 10.1016/j.matpr.2019.07.053
Google Scholar