Advanced Statistical Analysis of Grain Structure in Single-Phase Materials Nanostructured by High-Pressure Torsion

Article Preview

Abstract:

Elaboration of statistical analysis of grain structure in bulk single-phase metal materials, subjected to high-pressure torsion, is proposed. The method includes a combination of logarithmic standard distribution and Gauss distribution, in order to improve fitting of histograms of grain size distribution by the statistical model. The possibility of division of grain structure into different groups, taking into account specific features of distributions in every group, is demonstrated. The use of calculated parameters of grain size distributions is proposed to identify groups of grains by their origin. The grain structure analysis is given by an example of tin bronze nanostructured by high-pressure torsion. The agreement of the analysis results with the experimental data is demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

376-380

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater., 48 (2000) 1-29.

Google Scholar

[2] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater, 61 (2013) 782–817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[3] R.Z. Valiev, A.P. Zhilyaev, T.G Langdon, Bulk Nanostructured Materials: Fundamentals and Applications. TMS, Wiley, Hoboken, New Jersey, USA, (2014).

Google Scholar

[4] R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Mater., 3 (2004) 511-516.

DOI: 10.1038/nmat1180

Google Scholar

[5] M. Kawasaki, T.G. Langdon, Principles of superplasticity in ultrafine-grained materials, J. Mater Sci., 42 (2007) 1782-1796.

DOI: 10.1007/s10853-006-0954-2

Google Scholar

[6] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. A 540 (2012) 1-12.

DOI: 10.1016/j.msea.2012.01.080

Google Scholar

[7] R.Z. Valiev, R.Sh. Musalimov, High-resolution transmission electron microscopy of nanocrystalline materials, Phys. Met. Metallogr. 78 (1994) 666-670.

Google Scholar

[8] Yu.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev, R.Z. Valiev, Grain boundary diffusion characteristics of nanostructured nickel, Scripta Mater. 44 (2001) 873-878.

DOI: 10.1016/s1359-6462(00)00699-0

Google Scholar

[9] V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky, Mossbauer emission spectroscopy of grain boundaries in poly- and nanocrystalline niobium, Bull. RAS: Physics, 71 (2007) 1244-1248.

DOI: 10.3103/s1062873807090110

Google Scholar

[10] V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky, NGR Investigation of Grain-Boundary Diffusion in Poly- and Nanocrystalline Nb, Defect and Diffusion Forum. 263 (2007) 69-74.

DOI: 10.4028/www.scientific.net/ddf.263.69

Google Scholar

[11] G. Wilde, J. Ribbe, G. Reglitz, M. Wegner, H. Rösner, Y. Estrin, M. Zehetbauer, D. Setman, S. Divinski. Plasticity and grain boundary diffusion at small grain sizes, Adv. Eng. Mater. 12 (2010), 758-764.

DOI: 10.1002/adem.200900333

Google Scholar

[12] A.V. Stolbovskii, E.N. Popova, Study of the Grain Boundary Structure in Submicrocrystalline Niobium after Equal-Channel Angular Pressing, Bull. Russ. Acad. Sci. Phys. 74 (2010) 388-392.

DOI: 10.3103/s1062873810030159

Google Scholar

[13] V.V. Popov, Mössbauer Spectroscopy of Grain Boundaries in Ultrafine-Grained Metal Materials, Material Science Forum, 783-786 (2014) 2671-2676.

DOI: 10.4028/www.scientific.net/msf.783-786.2671

Google Scholar

[14] V.V. Popov, A.V. Sergeev, A.V. Stolbovsky, Emission Nuclear Gamma-Resonance Spectroscopy of Grain Boundaries in Coarse-Grained and Ultrafine-Grained Polycrystalline Mo, Defect and Diffusion Forum. 364 (2015) 147-156.

DOI: 10.4028/www.scientific.net/ddf.364.147

Google Scholar

[15] V.V. Popov, A.V. Stolbovsky, A.V. Sergeev, V.A. Semionkin, Mössbauer Spectroscopy of Grain Boundaries in Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Bull. Russ. Acad. Sci. Phys. 81 (2017) 951-955.

DOI: 10.3103/s106287381707022x

Google Scholar

[16] V.V. Popov, A.V. Sergeev, A.V. Stolbovsky, Emission Mössbauer spectroscopy of grain boundaries in ultrafine-grained W and Mo produced by severe plastic deformation, Phys. Met. Metallogr.118 (2017) 354-361.

DOI: 10.1134/s0031918x17040081

Google Scholar

[17] V.V. Popov. Mössbauer Spectroscopy of Interfaces in Metals. Phys. Met. Metallogr. 113(13) (2012) 1257-1289.

DOI: 10.1134/s0031918x12130029

Google Scholar

[18] A.V. Korznikov, A.N. Tyumentsev, I.A. Ditenberg, On the limiting minimum size of grains formed in metallic materials produced by high-pressure torsion, Phys. Met. Metallogr. 106 (4) (2008) 418–423.

DOI: 10.1134/s0031918x08100128

Google Scholar

[19] T. Hebesberger, A. Vorhauer, H.P. Stuwe, R. Pippan, Proc. Conf. Nanomaterials by Severe Plastic Deformation-NANOSPD2,, Vienna, Austria. (2002) 447-452.

DOI: 10.1002/3527602461.ch8b

Google Scholar

[20] R. Pippan, S. Scheriau, A. Taylor, et al., Saturation of fragmentation during severe plastic deformation, Annu. Rev. Mater. Res. 40 (2010) 319-343.

DOI: 10.1146/annurev-matsci-070909-104445

Google Scholar

[21] V.V. Popov, A.V. Stolbovkiy, E.N. Popova, V.P. Pilyugin, Structure and Thermal Stability of Cu after Severe Plastic Deformation, Defect and Diffusion Forum. 297-301 (2010) 1312-1321.

DOI: 10.4028/www.scientific.net/ddf.297-301.1312

Google Scholar

[22] A.V. Stolbovsky, E.P. Farafontova, Statistical Analysis Method of the Grain Structure of Nanostructured Single Phase Metal Materials Processed by High-Pressure Torsion, Solid State Phenomena. 284 (2018) 425-430.

DOI: 10.4028/www.scientific.net/ssp.284.425

Google Scholar

[23] A.V. Stolbovsky, E.P. Farafontova, Statistical Analysis of Histograms of Grain Size Distribution in Nanostructured Materials Processed by Severe Plastic Deformation, Solid State Phenomena. 284 (2018) 431-435.

DOI: 10.4028/www.scientific.net/ssp.284.431

Google Scholar

[24] A.V. Stolbovsky, V.V. Popov, E.N. Popova, Structure and Thermal Stability of Tin Bronze Nanostructured by High Pressure Torsion, Diagnostics, Resource and Mechanics of materials and structures. 5 (2015) 118-132.

DOI: 10.17804/2410-9908.2015.5.118-132

Google Scholar