[1]
A. Nadai, Theory of flow and fracture of solids, Volume II, McGraw-Hill Bool Company, Inc., New York, (1963).
Google Scholar
[2]
D.F. Fields, W.A. Backofen, Determination of strain-hardening characteristics by torsion testing, in: Proceedings of the 6th annual meeting of the society, ASTM Proceeding, (1957) 1259-1272.
Google Scholar
[3]
S. Khoddam, P.D. Hodgson, Post processing of the hot torsion test results using a multi-dimensional modelling approach, Materials&Design. 31-5 (2010) 2578-2584.
DOI: 10.1016/j.matdes.2009.11.029
Google Scholar
[4]
S. Khoddam, P.D. Hodgson, A heuristic model selection scheme for representing hot flow data using the hot torsion test results. Materials and Design. 31(4) (2010) 2011-2017.
DOI: 10.1016/j.matdes.2009.10.027
Google Scholar
[5]
J.J. Jonas, F. Montheillet, L.S. Toth, C. Ghoh, Effects of varying twist and twist rate sensitivities on the interpretation of torsion testing data, Materials Science & Engineering. 591 (2014) 9-17.
DOI: 10.1016/j.msea.2013.10.069
Google Scholar
[6]
T. Sheppard, D.S. Wright, Determination of flow stress: Part 1. Constitutive equation for aluminum alloys at elevated temperatures, Metals Technology. 6 (1979) 215-223.
DOI: 10.1179/030716979803276264
Google Scholar
[7]
K. Laber, A. Kawalek, S. Sawicki, H. Dyja et.al., Application of torsion test for determination of rheological properties of 5019 aluminium alloy, Key Engineering Materials, 682 (2016) 356-361.
DOI: 10.4028/www.scientific.net/kem.682.356
Google Scholar
[8]
S. Cooreman, D. Lecompte, H. Sol, J. Vantomme, D. Debruyne, Identification of mechanical material behavior through inverse modeling and DIC. Experimental Mechanics. 48(4) (2008) 421-433.
DOI: 10.1007/s11340-007-9094-0
Google Scholar
[9]
T. Sheppard, D.S. Wright, Determination of flow stress: Part 1. Constitutive equation for aluminum alloys at elevated temperatures. Metals Technology. 6(1) (1979 215-223.
DOI: 10.1179/030716979803276264
Google Scholar
[10]
K. Laber, A. Kawalek, S. Sawicki, H. Dyja, et al. Application of torsion test for determination of rheological properties of 5019 aluminium alloy. Key Engineering Materials, 682 (2016) 356-361.
DOI: 10.4028/www.scientific.net/kem.682.356
Google Scholar
[11]
A. Hensel, T. Spittel, Calculation of power parameters in metal forming processes. Handbook. Moscow: Metallurgiya, (1982).
Google Scholar
[12]
S.P. Burkin, R.F. Iskhakov, B.V. Ovsyannikov, et al. Torsion testing machine for cylindrical specimens. Patent RF No. 2379649. Applied: 14.04.2008. Published: 20.01.2010. Bulletin No. 2.
Google Scholar
[13]
F. J. Bell, Experimental basis of mechanics of deformable solids. Part I. Small deformation. Moscow: Nauka, (1984).
Google Scholar
[14]
P.I. Polukhin, G.Ya. Gun, A.M. Galkin, Resistance to plastic deformation of metals and alloys. Moscow: Metallurgiya, (1976).
Google Scholar
[15]
Ju.N. Rabotnov, Strength of materials. Moscow, Fizmatgiz, (1962).
Google Scholar
[16]
M.V. Erpalov, E.A. Kungurov, Examination of hardening curves definition methods in torsion test. Materials Physics and Mechanics. 38(1) (2018) 82-89.
DOI: 10.4028/www.scientific.net/ssp.284.598
Google Scholar
[17]
M.V. Erpalov, D.A. Pavlov, Torsion testing method for cylindrical samples of continuous section. Chernye Metally, 12 (2018) 72-76.
Google Scholar
[18]
M.V. Erpalov, D.A. Pavlov, Control and experimental data processing in torsion testing with variable acceleration. CIS Iron and Steel Review, (2018).
DOI: 10.17580/cisisr.2018.02.15
Google Scholar
[19]
Yu.N. Loginov, S.L. Demakov, A.G. Illarionov, and A.A. Popov, Effect of the Strain Rate on the Properties of Electrical Copper, Russian Metallurgy (Metally). 2011-3 (2011) 194-201.
DOI: 10.1134/s0036029511030098
Google Scholar
[20]
D.A. Pavlov, M.V. Erpalov, G.V. Shimov, E.A. Pavlova, Investigation of the influence of material properties on the inhomogeneity of deformation during lengthwise rolling of tubes on a stub mandrel. Chernye Metally. 10 (2018) 17-21.
DOI: 10.1016/j.matpr.2019.07.053
Google Scholar