Microanalysis of Additive Products from Electro-Erosion Cobalt-Chrome Powders

Article Preview

Abstract:

The results of microanalysis of additive products from electro-erosive cobalt-chrome powders are presented. It has been established experimentally that the obtained samples of additive products from powders, obtained by electro-erosive dispersion of cobalt-chrome wastes in alcohol, have a microcrystalline structure with a porosity of less than 0,78%. The obtained experimental data can be used in the development of promising resource-saving technologies for the manufacture of machine parts.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

508-512

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.I. Ryzhonkov, V.V. Levina, E.L. Dzidziguri, MISiS, 2006, p.182.

Google Scholar

[2] I.P. Suzdalev, KomKniga, 2006, p.592.

Google Scholar

[3] D. Demirskyi, D. Agrawal, A. Ragulya, Materials Letters, 2010, pp.1433-1436.

Google Scholar

[4] B. Schueren, J.P. Kruth, Rapid Prototyping Journal, 1995, pp.23-31.

Google Scholar

[5] C. Allen, M. Sheen, J. Williams, V.A. Pugsley, Wear, 2001, pp.604-610.

Google Scholar

[6] M.G. Gee, Wear, 2001, pp.264-281.

Google Scholar

[7] B.N. Babich, E.V. Vershinina, V.A. Glebov, EKOMET, 2005, p.520.

Google Scholar

[8] G.M. Bedford, V.I. Vitanov, I.I. Voutchkov, Surface and Coatings Technology, 2001, pp.34-39.

Google Scholar

[9] J. Karlsson, A. Snis, H. Engqvist, J. Lausmaa, Journal of Materials Processing Technology, 2013, pp.2109-2118.

Google Scholar

[10] S. Biamino, A. Penna, U. Ackelid, Intermetallics, 2011, pp.776-781.

Google Scholar

[11] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, International Materials Reviews, 2012, pp.133-164.

Google Scholar

[12] B. Song, S. Dong, B. Zhang, Materials & Design, 2012, pp.120-125.

Google Scholar

[13] B. Song, S. Dong, P. Coddet, Surface and Coatings Technology, 2012, pp.4704-4709.

Google Scholar

[14] Z. Wang, K. Guana, M. Gaoa, Journal of Alloys and Compounds, 2012, p.518–523.

Google Scholar

[15] G.M. Bedford, V.I. Vitanov, I.I. Voutchkov, Surface and Coatings Technology, 2001, pp.34-39.

Google Scholar

[16] C. Allen, M. Sheen, J. Williams, V.A. Pugsley, Wear, 2001, pp.604-610.

Google Scholar

[17] A.M. Adaskin, A.A. Vereshchaka, A.S. Vereshchaka, Journal of Friction and Wear, 2013, pp.208-213.

DOI: 10.3103/s1068366613030021

Google Scholar

[18] S.V. Kartsev, V.S. Shirshov, Industrial and manufacturing engineering, 2012, pp.37-38.

Google Scholar

[19] V.S. Muratov, O.N. Hamina, N.T. Cowsik, Modern problems of science and education, 2014, p.147.

Google Scholar

[20] E.A. Mikhailova, Progressive technologies and systems engineering, 2007, pp.298-302.

Google Scholar

[21] L.S. Kremnev, L.A. Vinogradova, Strengthening technologies and coatings, 2010, pp.3-8.

Google Scholar

[22] P.A. Topolyansky, S.A. Ermakov, N.A. Sosnin,. A.P. Topolyansky, Physics and chemistry of materials processing, 2011, pp.32-35.

Google Scholar

[23] I.N. Kravchenko, A.F. Puzriakov, V.Ya. Gladkov, E.V. Pankratova, M.A. Glinsky, Repair. Recovery. Modernization, 2011, pp.6-11.

Google Scholar

[24] I.M. Maltsev, International Science and Technology Magazine, 2003, p.60.

Google Scholar

[25] E.V. Ageeva, A.Yu. Altukhov, S.V. Khardikov, S.S. Gulidin, A.N. Novikov, Journal of nano- and electronic physics, (2015) 04080.

Google Scholar

[26] E.V. Ageeva, E.V. Ageev, S.V. Pikalov, E.A. Vorobiev, A.N. Novikov, Journal of nano- and electronic physics, (2015) 04058.

Google Scholar

[27] E.V. Ageeva, E.V. Ageev, N.M. Horyakova, V.S. Malukhov, Journal of nano- and electronic physics, (2014) 03011-1–03011-3.

Google Scholar