Influence of Powder Layer Thickness on Microstructure of Selective Laser Melted TiAl6V4

Article Preview

Abstract:

The 3D printed cubic bulk specimens (10x10x10 mm) were fabricated by Selective Laser Melting (SLM) additive manufacturing (AM) technology from TiAl6V4 powder, using different layer thickness (from 40 to 60 μm), for investigation of the influence of layer thickness on microstructure of SLM-fabricated TiAl6V4.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

524-529

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.K. Gokuldoss, S. Kolla, J. Eckert, Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines, Materials (Basel). 10 (2017).

DOI: 10.3390/ma10060672

Google Scholar

[2] P.A. Lykov, R.M. Baitimerov, A.V. Panfilov, A.. Guz, The manufacturing of TiAl6V4 implants using selective laser melting technology, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).

DOI: 10.1088/1757-899x/248/1/012004

Google Scholar

[3] A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy, Mater. Lett. 179 (2016) 38–41.

DOI: 10.1016/j.matlet.2016.05.064

Google Scholar

[4] H.R. Kim, S.-H. Jang, Y.K. Kim, J.S. Son, B.K. Min, K.-H. Kim, T.-Y. Kwon, Microstructures and mechanical properties of Co-Cr dental alloys fabricated by three CAD/CAM-based processing techniques, Materials (Basel). 9 (2016).

DOI: 10.3390/ma9070596

Google Scholar

[5] 3D printed copper rocket engine part on way to Mars, Met. Powder Rep. 70 (2015) 196–197.

DOI: 10.1016/j.mprp.2015.06.021

Google Scholar

[6] E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP. 35 (2015) 55–60.

DOI: 10.1016/j.procir.2015.08.061

Google Scholar

[7] L. Magerramova, M. Volkov, M. Svinareva, A. Siversky, The use of additive technologies to create lightweight parts for gas turbine engine compressors, in: Proc. ASME Turbo Expo, (2018).

DOI: 10.1115/gt2018-75904

Google Scholar

[8] S. Chekurov, T. Lantela, Selective Laser Melted Digital Hydraulic Valve System, 3D Print. Addit. Manuf. 4 (2017) 215–221.

DOI: 10.1089/3dp.2017.0014

Google Scholar

[9] D. Shamvedi, O.J. McCarthy, E. O'Donoghue, C. Danilenkoff, P. O'Leary, R. Raghavendra, 3D Metal printed heat sinks with longitudinally varying lattice structure sizes using direct metal laser sintering, Virtual Phys. Prototyp. 13 (2018) 301–310.

DOI: 10.1080/17452759.2018.1479528

Google Scholar

[10] P.A. Lykov, A.O. Shults, K.A. Bromer, The Production and Subsequent Selective Laser Melting of AlSi12 Powder, Solid State Phenom. 265 (2017) 434–438.

DOI: 10.4028/www.scientific.net/ssp.265.434

Google Scholar

[11] D. Wang, C. Yu, J. Ma, W. Liu, Z. Shen, Densification and crack suppression in selective laser melting of pure molybdenum, Mater. Des. 129 (2017) 44–52.

DOI: 10.1016/j.matdes.2017.04.094

Google Scholar

[12] R.K. Enneti, R. Morgan, S. V Atre, Effect of process parameters on the Selective Laser Melting (SLM) of tungsten, Int. J. Refract. Met. Hard Mater. 71 (2018) 315–319.

DOI: 10.1016/j.ijrmhm.2017.11.035

Google Scholar

[13] P.A. Lykov, S.B. Sapozhnikov, R.M. Baitimerov, The manufacturing of the AlSi12-Al2O3 composite powder for additive production methods, Solid State Phenom. 870 (2016) 314–317.

DOI: 10.4028/www.scientific.net/msf.870.314

Google Scholar

[14] B. AlMangour, D. Grzesiak, J.-M. Yang, In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting, J. Alloys Compd. 706 (2017) 409–418.

DOI: 10.1016/j.jallcom.2017.01.149

Google Scholar

[15] P.A. Lykov, R.M. Baitimerov, S.B. Sapozhnikov, D.A. Zherebtsov, The Manufacturing Of Cu-Al2O3 Composite Products Study Of Process Parameters, Structure And Mechanical Properties, Proc. 2nd Int. Conf. Prog. Addit. Manuf. (2016) 494–499.

Google Scholar

[16] C.Y. Yap, C.K. Chua, Z. Dong, Z.H. Liu, D.Q. Zhang, Single track and single layer melting of silica by Selective Laser Melting, in: High Value Manuf. Adv. Res. Virtual Rapid Prototyp. - Proc. 6th Int. Conf. Adv. Res. Rapid Prototyping, VR@P 2013, 2014, p.261–265.

DOI: 10.1201/b15961-49

Google Scholar

[17] Z. Fan, M. Lu, H. Huang, Selective laser melting of alumina: A single track study, Ceram. Int. 44 (2018) 9484–9493.

DOI: 10.1016/j.ceramint.2018.02.166

Google Scholar

[18] W. Shi, Y. Liu, X. Shi, Y. Hou, P. Wang, G. Song, Beam diameter dependence of performance in thick-layer and high-power selective laser melting of Ti-6Al-4V, Materials (Basel). 11 (2018).

DOI: 10.3390/ma11071237

Google Scholar

[19] C. Zhang, H. Zhu, Z. Hu, L. Zhang, X. Zeng, A comparative study on single-laser and multi-laser selective laser melting AlSi10Mg: defects, microstructure and mechanical properties, Mater. Sci. Eng. A. 746 (2019) 416–423.

DOI: 10.1016/j.msea.2019.01.024

Google Scholar

[20] F. Li, Z. Wang, X. Zeng, Microstructures and mechanical properties of Ti6Al4V alloy fabricated by multi-laser beam selective laser melting, Mater. Lett. 199 (2017) 79–83.

DOI: 10.1016/j.matlet.2017.04.050

Google Scholar

[21] R.M. Baitimerov, Single Track Formation During Selective Laser Melting of Ti-6Al-4V Alloy, Solid State Phenom. (2019).

DOI: 10.4028/www.scientific.net/msf.946.978

Google Scholar

[22] S. Wang, Y. Liu, W. Shi, B. Qi, J. Yang, F. Zhang, D. Han, Y. Ma, Research on high layer thickness fabricated of 316L by selective laser melting, Materials (Basel). 10 (2017).

DOI: 10.3390/ma10091055

Google Scholar

[23] L.-C. Zhang, H. Attar, M. Calin, J. Eckert, Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications, Mater. Technol. 31 (2016) 66–76.

DOI: 10.1179/1753555715y.0000000076

Google Scholar

[24] A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, P. Vopilovskiy, A. Sharonov, R. Tikhilov, A. Tsybin, A. Kovalenko, S. Bilyk, Use of Additive Techniques for Preparing Individual Components of Titanium Alloy Joint Endoprostheses, Biomed. Eng. (NY). 50 (2016) 202–205.

DOI: 10.1007/s10527-016-9619-x

Google Scholar

[25] R.M. Baitimerov, P.A. Lykov, L.V. Radionova, E.V. Safonov, Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).

DOI: 10.1088/1757-899x/248/1/012012

Google Scholar

[26] R.M. Baitimerov, P.A. Lykov, L.V. Radionova, A.M. Akhmedianov, S.P. Samoilov, An investigation of high temperature tensile properties of selective laser melted ti-6al-4v, Proc. 3rd Int. Conf. Prog. Addit. Manuf. (2018) 439–444.

Google Scholar

[27] X. Shi, S. Ma, C. Liu, C. Chen, Q. Wu, X. Chen, J. Lu, Performance of high layer thickness in selective laser melting of Ti6Al4V, Materials (Basel). 9 (2016).

DOI: 10.3390/ma9120975

Google Scholar

[28] G.A. Longhitano, M.A. Larosa, A.L. Jardini, C.A.D.C. Zavaglia, M.C.F. Ierardi, Correlation between microstructures and mechanical properties under tensile and compression tests of heat-treated Ti-6Al-4V ELI alloy produced by additive manufacturing for biomedical applications, J. Mater. Process. Technol. 252 (2018) 202–210.

DOI: 10.1016/j.jmatprotec.2017.09.022

Google Scholar

[29] P. Barriobero-Vila, J. Gussone, J. Haubrich, S. Sandlöbes, J.C. Da Silva, P. Cloetens, N. Schell, G. Requena, Inducing stable α + β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments, Materials (Basel). 10 (2017).

DOI: 10.3390/ma10030268

Google Scholar

[30] R.M. Baitimerov, P.A. Lykov, L.V. Radionova, Influence of heat treatment on microstructure and mechanical properties of selective laser melted tial6v4 alloy, Solid State Phenom. 284 (2018) 615–620.

DOI: 10.4028/www.scientific.net/ssp.284.615

Google Scholar