[1]
P.K. Gokuldoss, S. Kolla, J. Eckert, Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines, Materials (Basel). 10 (2017).
DOI: 10.3390/ma10060672
Google Scholar
[2]
P.A. Lykov, R.M. Baitimerov, A.V. Panfilov, A.. Guz, The manufacturing of TiAl6V4 implants using selective laser melting technology, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).
DOI: 10.1088/1757-899x/248/1/012004
Google Scholar
[3]
A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Microstructure and mechanical properties of additive manufactured copper alloy, Mater. Lett. 179 (2016) 38–41.
DOI: 10.1016/j.matlet.2016.05.064
Google Scholar
[4]
H.R. Kim, S.-H. Jang, Y.K. Kim, J.S. Son, B.K. Min, K.-H. Kim, T.-Y. Kwon, Microstructures and mechanical properties of Co-Cr dental alloys fabricated by three CAD/CAM-based processing techniques, Materials (Basel). 9 (2016).
DOI: 10.3390/ma9070596
Google Scholar
[5]
3D printed copper rocket engine part on way to Mars, Met. Powder Rep. 70 (2015) 196–197.
DOI: 10.1016/j.mprp.2015.06.021
Google Scholar
[6]
E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz, A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP. 35 (2015) 55–60.
DOI: 10.1016/j.procir.2015.08.061
Google Scholar
[7]
L. Magerramova, M. Volkov, M. Svinareva, A. Siversky, The use of additive technologies to create lightweight parts for gas turbine engine compressors, in: Proc. ASME Turbo Expo, (2018).
DOI: 10.1115/gt2018-75904
Google Scholar
[8]
S. Chekurov, T. Lantela, Selective Laser Melted Digital Hydraulic Valve System, 3D Print. Addit. Manuf. 4 (2017) 215–221.
DOI: 10.1089/3dp.2017.0014
Google Scholar
[9]
D. Shamvedi, O.J. McCarthy, E. O'Donoghue, C. Danilenkoff, P. O'Leary, R. Raghavendra, 3D Metal printed heat sinks with longitudinally varying lattice structure sizes using direct metal laser sintering, Virtual Phys. Prototyp. 13 (2018) 301–310.
DOI: 10.1080/17452759.2018.1479528
Google Scholar
[10]
P.A. Lykov, A.O. Shults, K.A. Bromer, The Production and Subsequent Selective Laser Melting of AlSi12 Powder, Solid State Phenom. 265 (2017) 434–438.
DOI: 10.4028/www.scientific.net/ssp.265.434
Google Scholar
[11]
D. Wang, C. Yu, J. Ma, W. Liu, Z. Shen, Densification and crack suppression in selective laser melting of pure molybdenum, Mater. Des. 129 (2017) 44–52.
DOI: 10.1016/j.matdes.2017.04.094
Google Scholar
[12]
R.K. Enneti, R. Morgan, S. V Atre, Effect of process parameters on the Selective Laser Melting (SLM) of tungsten, Int. J. Refract. Met. Hard Mater. 71 (2018) 315–319.
DOI: 10.1016/j.ijrmhm.2017.11.035
Google Scholar
[13]
P.A. Lykov, S.B. Sapozhnikov, R.M. Baitimerov, The manufacturing of the AlSi12-Al2O3 composite powder for additive production methods, Solid State Phenom. 870 (2016) 314–317.
DOI: 10.4028/www.scientific.net/msf.870.314
Google Scholar
[14]
B. AlMangour, D. Grzesiak, J.-M. Yang, In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting, J. Alloys Compd. 706 (2017) 409–418.
DOI: 10.1016/j.jallcom.2017.01.149
Google Scholar
[15]
P.A. Lykov, R.M. Baitimerov, S.B. Sapozhnikov, D.A. Zherebtsov, The Manufacturing Of Cu-Al2O3 Composite Products Study Of Process Parameters, Structure And Mechanical Properties, Proc. 2nd Int. Conf. Prog. Addit. Manuf. (2016) 494–499.
Google Scholar
[16]
C.Y. Yap, C.K. Chua, Z. Dong, Z.H. Liu, D.Q. Zhang, Single track and single layer melting of silica by Selective Laser Melting, in: High Value Manuf. Adv. Res. Virtual Rapid Prototyp. - Proc. 6th Int. Conf. Adv. Res. Rapid Prototyping, VR@P 2013, 2014, p.261–265.
DOI: 10.1201/b15961-49
Google Scholar
[17]
Z. Fan, M. Lu, H. Huang, Selective laser melting of alumina: A single track study, Ceram. Int. 44 (2018) 9484–9493.
DOI: 10.1016/j.ceramint.2018.02.166
Google Scholar
[18]
W. Shi, Y. Liu, X. Shi, Y. Hou, P. Wang, G. Song, Beam diameter dependence of performance in thick-layer and high-power selective laser melting of Ti-6Al-4V, Materials (Basel). 11 (2018).
DOI: 10.3390/ma11071237
Google Scholar
[19]
C. Zhang, H. Zhu, Z. Hu, L. Zhang, X. Zeng, A comparative study on single-laser and multi-laser selective laser melting AlSi10Mg: defects, microstructure and mechanical properties, Mater. Sci. Eng. A. 746 (2019) 416–423.
DOI: 10.1016/j.msea.2019.01.024
Google Scholar
[20]
F. Li, Z. Wang, X. Zeng, Microstructures and mechanical properties of Ti6Al4V alloy fabricated by multi-laser beam selective laser melting, Mater. Lett. 199 (2017) 79–83.
DOI: 10.1016/j.matlet.2017.04.050
Google Scholar
[21]
R.M. Baitimerov, Single Track Formation During Selective Laser Melting of Ti-6Al-4V Alloy, Solid State Phenom. (2019).
DOI: 10.4028/www.scientific.net/msf.946.978
Google Scholar
[22]
S. Wang, Y. Liu, W. Shi, B. Qi, J. Yang, F. Zhang, D. Han, Y. Ma, Research on high layer thickness fabricated of 316L by selective laser melting, Materials (Basel). 10 (2017).
DOI: 10.3390/ma10091055
Google Scholar
[23]
L.-C. Zhang, H. Attar, M. Calin, J. Eckert, Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications, Mater. Technol. 31 (2016) 66–76.
DOI: 10.1179/1753555715y.0000000076
Google Scholar
[24]
A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, P. Vopilovskiy, A. Sharonov, R. Tikhilov, A. Tsybin, A. Kovalenko, S. Bilyk, Use of Additive Techniques for Preparing Individual Components of Titanium Alloy Joint Endoprostheses, Biomed. Eng. (NY). 50 (2016) 202–205.
DOI: 10.1007/s10527-016-9619-x
Google Scholar
[25]
R.M. Baitimerov, P.A. Lykov, L.V. Radionova, E.V. Safonov, Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser, IOP Conf. Ser. Mater. Sci. Eng. 248 (2017).
DOI: 10.1088/1757-899x/248/1/012012
Google Scholar
[26]
R.M. Baitimerov, P.A. Lykov, L.V. Radionova, A.M. Akhmedianov, S.P. Samoilov, An investigation of high temperature tensile properties of selective laser melted ti-6al-4v, Proc. 3rd Int. Conf. Prog. Addit. Manuf. (2018) 439–444.
Google Scholar
[27]
X. Shi, S. Ma, C. Liu, C. Chen, Q. Wu, X. Chen, J. Lu, Performance of high layer thickness in selective laser melting of Ti6Al4V, Materials (Basel). 9 (2016).
DOI: 10.3390/ma9120975
Google Scholar
[28]
G.A. Longhitano, M.A. Larosa, A.L. Jardini, C.A.D.C. Zavaglia, M.C.F. Ierardi, Correlation between microstructures and mechanical properties under tensile and compression tests of heat-treated Ti-6Al-4V ELI alloy produced by additive manufacturing for biomedical applications, J. Mater. Process. Technol. 252 (2018) 202–210.
DOI: 10.1016/j.jmatprotec.2017.09.022
Google Scholar
[29]
P. Barriobero-Vila, J. Gussone, J. Haubrich, S. Sandlöbes, J.C. Da Silva, P. Cloetens, N. Schell, G. Requena, Inducing stable α + β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments, Materials (Basel). 10 (2017).
DOI: 10.3390/ma10030268
Google Scholar
[30]
R.M. Baitimerov, P.A. Lykov, L.V. Radionova, Influence of heat treatment on microstructure and mechanical properties of selective laser melted tial6v4 alloy, Solid State Phenom. 284 (2018) 615–620.
DOI: 10.4028/www.scientific.net/ssp.284.615
Google Scholar