Crystallographic Peculiarities of β-α Transformation in Brass Induced by Hot Extrusion

Article Preview

Abstract:

Structure-texture states in brass rods after hot extrusion and air-cooling have been investigated with the orientation microscopy (EBSD). In the examined samples, a significant concentration of β-phase with the lattice, close to bcc and fcc α-phase, has been detected. The β-phase texture consisted of the main components: two close to {110}<110> and {001}<110>. The α-phase texture consisted of the main components: close to {001}<100> and two close {110}<111>. The analysis of crystallographic relationship of the texture components of β-and α-phases demonstrates that they may all be obtained, in accordance with the orientation relations, which are intermediate between the Kurdjumov-Sachs and Nishiyama-Wasserman types It is assumed that β-α transformation began in β-phase at coincident site lattice Σ3 and Σ33a boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

541-545

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.A. Pantazopoulos, A.I. Toulfatzis, Fracture Modes and Mechanical Characteristics of Machinable Brass Rods. Metallogr. Microstruct. Anal. 1 (2012) 106–114.

DOI: 10.1007/s13632-012-0019-7

Google Scholar

[2] Yu.N. Loginov A.S. Ovchinnikov, Increase in the uniformity of structure and properties of extruded workpieces of alpha + beta lead brasses. Metallurgist 59, Nos. 3–4 (2015) 342-347.

DOI: 10.1007/s11015-015-0107-4

Google Scholar

[3] P. Garcia, S. Rivera, M. Palacios, J. Belzunce, Comparative study of the parameters influencing the machinability of leaded brasses. Eng. Fail. Anal., 17 (2010) 771–776.

DOI: 10.1016/j.engfailanal.2009.08.012

Google Scholar

[4] G. Pantazopoulos, A. Vazdirvanidis, Characterization of the microstructural aspects of machinable α-β brass. Microsc. Anal, 22(5) (2008) 13–16.

Google Scholar

[5] C. Mapelli, R. Venturini, Dependence of the mechanical properties of an α/β brass on the microstructural features induced by hot extrusion, Scripta Materialia, 54 (2006) 1169–1173.

DOI: 10.1016/j.scriptamat.2005.11.039

Google Scholar

[6] Y.-H. Xiao, Ch. Guo, X.-Y. Guo, Constitutive modeling of hot deformation behavior of H62 brass, Mater. Sci. Eng. A, 528 (2011) 6510–6518.

DOI: 10.1016/j.msea.2011.04.090

Google Scholar

[7] H.G. Kim, S.Z. Han, K. Euh, S. H. Lim, Effects of C addition and thermo-mechanical treatments on microstructures and properties of Cu–Fe–P alloys, Materials Science and Engineering A, 530 (2011) 652–658.

DOI: 10.1016/j.msea.2011.10.041

Google Scholar

[8] W.B. Hutchinson, B.J. Duggan, M. Hatherly, Development of deformation texture and microstructure in cold-rolled Cu-30Zn, Metals Technology, 6(1) (1979) 398–403.

DOI: 10.1179/030716979803276598

Google Scholar

[9] M.A. Zorina, M.S. Karabanalov, S.I. Stepanov, S.L. Demakov, Yu.N. Loginov, M.L. Lobanov, Fiber vs Rolling Texture: Stress State Dependence for Cold-Drawn Wire // Metallurgical and Materials Transaction A, 49A (2018) 427–433.

DOI: 10.1007/s11661-017-4423-0

Google Scholar

[10] A.V. Druker, C. Sobrero, V. Fuster, J. Malarria, R. Bolmaro, Is it Possible to Use Rolling Methods to Improve Textures on Fe-Mn-Si Shape Memory Alloys?, Advanced Engineering Materials, 20, no. 4 (2018) 1700062: 1–11.

DOI: 10.1002/adem.201700062

Google Scholar

[11] K.R. Narayanan, I. Sridhar, S. Subbiah, Experimental and numerical investigations of the texture evolution in copper wire drawing, Appl. Phys. A, 107 (2012) 485–495.

DOI: 10.1007/s00339-012-6777-x

Google Scholar

[12] Y. Wang, H.-Y. Huang, J.-X. Xie, Texture evolution and flow stress of columnar-grained polycrystalline copper during intense plastic deformation process at room temperature, Materials Science and Engineering A, 530 (2011) 418–425.

DOI: 10.1016/j.msea.2011.09.105

Google Scholar

[13] S. Hagos, A.K. Verma, P. Mukhopadhyay, A.K. Singh, Contribution of process annealing on the development of microstructure and texture of cu-30zn brass, Advances in Materials Science and Engineering, 2013 (2013) 382534: 1–8.

DOI: 10.1155/2013/382534

Google Scholar

[14] M.A. Zorina, M.L. Lobanov, E.A. Makarova, G.M. Rusakov, Primary recrystallization texture in FCC-Metal with low packing defect energy, Metal Science and Heat Treatment, 60(5–6) (2018) 329–336.

DOI: 10.1007/s11041-018-0280-8

Google Scholar

[15] S.L. Demakov, Yu.N. Loginov, A.G. Illarionov, M.A. Ivanova, and M. S. Karabanalov, Effect of Annealing Temperature on the Texture of Copper Wire, The Physics of Metals and Metallography, 113, no. 7 (2012) 681–686.

DOI: 10.1134/s0031918x12070046

Google Scholar

[16] A.S. Belyaevskikh, M.L. Lobanov, G.M. Rusakov, A.A. Redikul'tsev, Improving the production of superthin anisotropic electrical steel, Steel. Transl. 45 (2015) 982–986.

DOI: 10.3103/s0967091215120037

Google Scholar

[17] I.Yu. Pyshmintsev, A.O. Struin, A.M. Gervasyev, M.L. Lobanov, G.M. Rusakov, S.V. Danilov, A.B. Arabey, Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment, Metallurgist, 60 (2016) 405–412.

DOI: 10.1007/s11015-016-0306-7

Google Scholar

[18] M.L. Lobanov, M.D. Borodina, S.V. Danilov, I.Yu. Pyshmintsev, A.O. Struin, Textural Heredity at Phase Transformations in Low-Carbon Low-Alloy Pipe Steel after Controlled Thermomechanical Processing, Steel in Translation, 47(11) (2017) 710–716.

DOI: 10.3103/s0967091217110055

Google Scholar

[19] V.M. Schastlivtsev, L.B. Blindt, L.P. Rodionov, I.D. Yakovleva, Structure of martensite packets in engineering steels, Phys. Met. Metallogr. 66(4) (1988), 123–133.

Google Scholar

[20] V.M. Schastlivtsev, The structural and crystallographic features of the lathy martensite of structural steels, Metally, 5 (2001) 32–41.

Google Scholar

[21] E.V. Pereloma, F. Al-Harbi, A.A. Gazder, The crystallography of carbide-free bainites in thermomechanically processed low Si transformation-induced plasticity steels, J. Alloys Compd., 615 (2014) 96–110.

DOI: 10.1016/j.jallcom.2014.05.123

Google Scholar

[22] A.S. Belyaevskikh, G.M. Rusakov, M.L. Lobanov, The special grain boundaries formation in bcc metals during strong uniaxial deformation, Izvestiya – Ferrous Metallurgy, 58(3) (2015) 210–211 (in Russ.).

DOI: 10.17073/0368-0797-2015-3-210-211

Google Scholar

[23] N. Nakada, H. Ito, Y. Matsuoka, et al., Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels, Acta Mater., 58 (2010) 895–903.

DOI: 10.1016/j.actamat.2009.10.004

Google Scholar

[24] G.M. Rusakov, M.L. Lobanov, A.A. Redikul'tsev, Belyaevskikh, A.S., Special misorientations and textural heredity in the commercial alloy Fe–3% Si, Phys. Met. Metallogr., 115(8) (2014) 775–785.

DOI: 10.1134/s0031918x14080134

Google Scholar

[25] М.L. Lobanov, S.V. Danilov, V.I. Pastukhov, S.A. Averin, Y.Y. Khrunyk, A.A. Popov, The crystallographic relationship of molybdenum textures after hot rolling and recrystallization, Mater. Design. 109 (2016) 251–255.

DOI: 10.1016/j.matdes.2016.06.103

Google Scholar