[1]
G.A. Pantazopoulos, A.I. Toulfatzis, Fracture Modes and Mechanical Characteristics of Machinable Brass Rods. Metallogr. Microstruct. Anal. 1 (2012) 106–114.
DOI: 10.1007/s13632-012-0019-7
Google Scholar
[2]
Yu.N. Loginov A.S. Ovchinnikov, Increase in the uniformity of structure and properties of extruded workpieces of alpha + beta lead brasses. Metallurgist 59, Nos. 3–4 (2015) 342-347.
DOI: 10.1007/s11015-015-0107-4
Google Scholar
[3]
P. Garcia, S. Rivera, M. Palacios, J. Belzunce, Comparative study of the parameters influencing the machinability of leaded brasses. Eng. Fail. Anal., 17 (2010) 771–776.
DOI: 10.1016/j.engfailanal.2009.08.012
Google Scholar
[4]
G. Pantazopoulos, A. Vazdirvanidis, Characterization of the microstructural aspects of machinable α-β brass. Microsc. Anal, 22(5) (2008) 13–16.
Google Scholar
[5]
C. Mapelli, R. Venturini, Dependence of the mechanical properties of an α/β brass on the microstructural features induced by hot extrusion, Scripta Materialia, 54 (2006) 1169–1173.
DOI: 10.1016/j.scriptamat.2005.11.039
Google Scholar
[6]
Y.-H. Xiao, Ch. Guo, X.-Y. Guo, Constitutive modeling of hot deformation behavior of H62 brass, Mater. Sci. Eng. A, 528 (2011) 6510–6518.
DOI: 10.1016/j.msea.2011.04.090
Google Scholar
[7]
H.G. Kim, S.Z. Han, K. Euh, S. H. Lim, Effects of C addition and thermo-mechanical treatments on microstructures and properties of Cu–Fe–P alloys, Materials Science and Engineering A, 530 (2011) 652–658.
DOI: 10.1016/j.msea.2011.10.041
Google Scholar
[8]
W.B. Hutchinson, B.J. Duggan, M. Hatherly, Development of deformation texture and microstructure in cold-rolled Cu-30Zn, Metals Technology, 6(1) (1979) 398–403.
DOI: 10.1179/030716979803276598
Google Scholar
[9]
M.A. Zorina, M.S. Karabanalov, S.I. Stepanov, S.L. Demakov, Yu.N. Loginov, M.L. Lobanov, Fiber vs Rolling Texture: Stress State Dependence for Cold-Drawn Wire // Metallurgical and Materials Transaction A, 49A (2018) 427–433.
DOI: 10.1007/s11661-017-4423-0
Google Scholar
[10]
A.V. Druker, C. Sobrero, V. Fuster, J. Malarria, R. Bolmaro, Is it Possible to Use Rolling Methods to Improve Textures on Fe-Mn-Si Shape Memory Alloys?, Advanced Engineering Materials, 20, no. 4 (2018) 1700062: 1–11.
DOI: 10.1002/adem.201700062
Google Scholar
[11]
K.R. Narayanan, I. Sridhar, S. Subbiah, Experimental and numerical investigations of the texture evolution in copper wire drawing, Appl. Phys. A, 107 (2012) 485–495.
DOI: 10.1007/s00339-012-6777-x
Google Scholar
[12]
Y. Wang, H.-Y. Huang, J.-X. Xie, Texture evolution and flow stress of columnar-grained polycrystalline copper during intense plastic deformation process at room temperature, Materials Science and Engineering A, 530 (2011) 418–425.
DOI: 10.1016/j.msea.2011.09.105
Google Scholar
[13]
S. Hagos, A.K. Verma, P. Mukhopadhyay, A.K. Singh, Contribution of process annealing on the development of microstructure and texture of cu-30zn brass, Advances in Materials Science and Engineering, 2013 (2013) 382534: 1–8.
DOI: 10.1155/2013/382534
Google Scholar
[14]
M.A. Zorina, M.L. Lobanov, E.A. Makarova, G.M. Rusakov, Primary recrystallization texture in FCC-Metal with low packing defect energy, Metal Science and Heat Treatment, 60(5–6) (2018) 329–336.
DOI: 10.1007/s11041-018-0280-8
Google Scholar
[15]
S.L. Demakov, Yu.N. Loginov, A.G. Illarionov, M.A. Ivanova, and M. S. Karabanalov, Effect of Annealing Temperature on the Texture of Copper Wire, The Physics of Metals and Metallography, 113, no. 7 (2012) 681–686.
DOI: 10.1134/s0031918x12070046
Google Scholar
[16]
A.S. Belyaevskikh, M.L. Lobanov, G.M. Rusakov, A.A. Redikul'tsev, Improving the production of superthin anisotropic electrical steel, Steel. Transl. 45 (2015) 982–986.
DOI: 10.3103/s0967091215120037
Google Scholar
[17]
I.Yu. Pyshmintsev, A.O. Struin, A.M. Gervasyev, M.L. Lobanov, G.M. Rusakov, S.V. Danilov, A.B. Arabey, Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment, Metallurgist, 60 (2016) 405–412.
DOI: 10.1007/s11015-016-0306-7
Google Scholar
[18]
M.L. Lobanov, M.D. Borodina, S.V. Danilov, I.Yu. Pyshmintsev, A.O. Struin, Textural Heredity at Phase Transformations in Low-Carbon Low-Alloy Pipe Steel after Controlled Thermomechanical Processing, Steel in Translation, 47(11) (2017) 710–716.
DOI: 10.3103/s0967091217110055
Google Scholar
[19]
V.M. Schastlivtsev, L.B. Blindt, L.P. Rodionov, I.D. Yakovleva, Structure of martensite packets in engineering steels, Phys. Met. Metallogr. 66(4) (1988), 123–133.
Google Scholar
[20]
V.M. Schastlivtsev, The structural and crystallographic features of the lathy martensite of structural steels, Metally, 5 (2001) 32–41.
Google Scholar
[21]
E.V. Pereloma, F. Al-Harbi, A.A. Gazder, The crystallography of carbide-free bainites in thermomechanically processed low Si transformation-induced plasticity steels, J. Alloys Compd., 615 (2014) 96–110.
DOI: 10.1016/j.jallcom.2014.05.123
Google Scholar
[22]
A.S. Belyaevskikh, G.M. Rusakov, M.L. Lobanov, The special grain boundaries formation in bcc metals during strong uniaxial deformation, Izvestiya – Ferrous Metallurgy, 58(3) (2015) 210–211 (in Russ.).
DOI: 10.17073/0368-0797-2015-3-210-211
Google Scholar
[23]
N. Nakada, H. Ito, Y. Matsuoka, et al., Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels, Acta Mater., 58 (2010) 895–903.
DOI: 10.1016/j.actamat.2009.10.004
Google Scholar
[24]
G.M. Rusakov, M.L. Lobanov, A.A. Redikul'tsev, Belyaevskikh, A.S., Special misorientations and textural heredity in the commercial alloy Fe–3% Si, Phys. Met. Metallogr., 115(8) (2014) 775–785.
DOI: 10.1134/s0031918x14080134
Google Scholar
[25]
М.L. Lobanov, S.V. Danilov, V.I. Pastukhov, S.A. Averin, Y.Y. Khrunyk, A.A. Popov, The crystallographic relationship of molybdenum textures after hot rolling and recrystallization, Mater. Design. 109 (2016) 251–255.
DOI: 10.1016/j.matdes.2016.06.103
Google Scholar