[1]
M Navarro, A. Michiardi, O Castaño and J.A Planell, Biomaterials in orthopaedics, J. R. Soc. Interface 5 (2008) 1137-1158.
DOI: 10.1098/rsif.2008.0151
Google Scholar
[2]
D. Olmedo, M. B. Guglielmotti, R. L. Carbini, An experimental study of the dissemination of Titanium and Zirconium in body, Journal of materials science: Materials in medicine, 13 (2002) 793-796.
Google Scholar
[3]
H. Matsuno, A.Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium, Biomaterials, 22 (2001) 1253-1262.
DOI: 10.1016/s0142-9612(00)00275-1
Google Scholar
[4]
Y. H. Jeong, K. OkLee, H. G. Kim, Correlation between microstructure and corrosion behavior of Zr–Nb binary alloy, Journal of Nuclear Materials, 302 (2002) 9-19.
DOI: 10.1016/s0022-3115(02)00703-1
Google Scholar
[5]
I.C. Clarke, M. Manaka, D.D. Green, MS, P. William S., G. Pezzotti, Y.-H. Kim, M. Ries, N. Sugano, L. Sedel, C. Delauney, B. Ben Nissan, T. Donaldson, G.A. Gustafson, Current Status of Zirconia Used in Total Hip Implants, J Bone Joint Surg Am. 85-4 (2003) 73-84.
DOI: 10.2106/00004623-200300004-00009
Google Scholar
[6]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 45-2 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[7]
T. G. Langdon, The characteristics of grain refinement in materials processed by severe plastic deformation, Rev. Adv. Mater. Sci., 13 (2000) 6-14.
Google Scholar
[8]
C. Xu, Z. Horita, T.G. Langdon, The evolution of homogeneity in processing by high-pressure torsion, Acta Materialia, 55-1(2007) 203-212.
DOI: 10.1016/j.actamat.2006.07.029
Google Scholar
[9]
A. Naizabekov, S. Lezhnev, K. Tsay, A.Arbuz, Effect of cross rolling on the microstructure of steel, Nanocon 2015, 7th International Conference on Nanomaterials - Research & Application, Brno, Czech Republic, EU, (2015).
Google Scholar
[10]
A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, Y.T. Zhu, Corrosion resistance of ultra fine-grained Ti, Scripta Materialia, 51 (2004) 225–229.
DOI: 10.1016/j.scriptamat.2004.04.011
Google Scholar
[11]
C.S. Meredith, A.S. Khan, Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing, International Journal of Plasticity, 30–31 (2012) 202–217.
DOI: 10.1016/j.ijplas.2011.10.006
Google Scholar
[12]
G.I. Raab, R.Z. Valiev, D.V. Gunderov, T.C. Lowe, A. Misra, Y.T. Zhu, Long-length Ultrafine-grained Titanium Rods produced by ECAP-Conform, Materials Science Forum, 584-586 (2008) 80-85.
DOI: 10.4028/www.scientific.net/msf.584-586.80
Google Scholar
[13]
R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science, 51 (2006) 881–981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[14]
H. Dyja, A. Kawałek, A. Galkin, K. Ozhmegov, S. Sawicki, Physical modelling of the multi-pass forging of zirconium alloy blanks, Proceedings of 23rd International Conference on Metallurgy and Materials, METAL 2014; Brno; Czech Republic, (2014) 402-406.
DOI: 10.2478/amm-2014-0157
Google Scholar
[15]
R. Skoblik, D. Rydz, G. Stradomski, Analysis of asymmetrical rolling process of multilayer plates, Solid State Phenomena, 165 (2010) 348-352.
DOI: 10.4028/www.scientific.net/ssp.165.348
Google Scholar
[16]
M. Knapiński, H. Dyja, A. Kawałek, M. Kwapisz, B. Koczurkiewicz, Physical simulations of the controlled rolling process of plate X100 with accelerated cooling, Solid State Phenomena, 199 (2013) 484-489.
DOI: 10.4028/www.scientific.net/ssp.199.484
Google Scholar
[17]
N.V. Lopatin, G.A. Salishchev, S.P. Galkin, Mathematical modeling of radial-shear rolling of the VT6 titanium alloy under conditions of formation of a globular structure, Russian Journal of Non-Ferrous Metals, 52-5 (2011) 442-447.
DOI: 10.3103/s1067821211050075
Google Scholar
[18]
S.P. Galkin, Radial shear rolling as an optimal technology for lean production, Steel in Translation, 44-1 (2014) 61-64.
DOI: 10.3103/s0967091214010069
Google Scholar
[19]
H. Dyja, A. Kawalek, K. Ozhmegov, S. Sawicki, K. Laber, Physical modelling of the zirconium alloy tube pilger rolling process, Proceedings of 26th International Conference on Metallurgy and Materials, METAL 2017; Brno; Czech Republic, (2017) 1701-1707.
Google Scholar
[20]
S.P. Galkin R.F. Patent №2293619 (2007).
Google Scholar
[21]
S. Dobatkin, S. Galkin, Y. Estrin, V. Serebryany, M. Diez, N. Martynenko, E. Lukyanova, V. Perezhogin, Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling, Journal of Alloys and Compounds 774, 5 (2019) 969-979.
DOI: 10.1016/j.jallcom.2018.09.065
Google Scholar