[1]
A.D. Drozin, Growth of Microparticles of the Products of Chemical Reactions in a Liquid Solution: Monograph, YuUrGU, Chelyabinsk, (2007).
Google Scholar
[2]
P.A. Gamov, A.D. Drozin, M.V. Dudorov, Model for Nanocrystal Growth in an Amorphous Alloy, Russian Metallurgy (Metally), 11 (2012) 101-105.
DOI: 10.1134/s0036029512110055
Google Scholar
[3]
I.S. Miroshnichenko, Quenching from Liquid State, Metallurgia, Moscow, (1984).
Google Scholar
[4]
D.M. Herlach, P. Galenko, D. Holland-Moritz, Metastable Solids from Undercooled Melts, Elsevier, Amsterdam, (2007).
DOI: 10.1016/s1470-1804(07)80023-x
Google Scholar
[5]
J.C. Baker, J.W. Cahn, Solute Trapping by Rapid Solidification, Acta Met. 17 (1969) 575-578.
DOI: 10.1016/0001-6160(69)90116-3
Google Scholar
[6]
M.J. Aziz, Model for solute redistribution during rapid solidification, J. Appl. Phys. 53 (2) (1982) 1158-1168.
DOI: 10.1063/1.329867
Google Scholar
[7]
H. Garcke, B. Nestler, B. Stinner, A diffuse interface model for alloys with multiple components and phases, SIAM J Appl. Math. 64, 3 (2004) 775-799.
DOI: 10.1137/s0036139902413143
Google Scholar
[8]
P.K. Galenko, H. Gomez, N.V. Kropotin, Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation, Phys. Rev. E, 88 (2013) 013310.
DOI: 10.1103/physreve.88.013310
Google Scholar
[9]
C.V. Thompson, F. Spaepen, Homogeneous crystal nucleation in binary metallic melts, Acta Metallurgica, 31 (1983) 2021-2027.
DOI: 10.1016/0001-6160(83)90019-6
Google Scholar
[10]
I. Prigogine, R. Defay, Chemical Thermodynamics, Longmans Green, London, (1954).
Google Scholar
[11]
P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, Mir, Moscow, (1973).
Google Scholar
[12]
S. Kjelstrup, D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, Series on Advances in Statistical MechanicsVol. 16, World Scientific, Singapore, (2008).
DOI: 10.1142/6672
Google Scholar
[13]
A.D. Drozin, Theoretical analysis of the nucleation of non-metallic inclusions in the liquid metal, Russian Metallurgy (Metally), 5 (1987) 73-77.
Google Scholar
[14]
A.D. Drozin, Mathematical model for the growth of deoxidation products in a liquid metal, Russian Metallurgy (Metally), 6 (1987) 19-22.
Google Scholar
[15]
M.V. Dudorov, Decomposition of crystal-growth equations in multicomponent melts, J. Crystal Growth 396 (2014) 45-49.
DOI: 10.1016/j.jcrysgro.2014.03.035
Google Scholar
[16]
U. Köster, U. Schünemann, Blank nanocrystalline materials by crystallization of metall - metalloid glasses, Mat.Sci., A133 (1991) 611-615.
DOI: 10.1016/b978-0-444-89107-5.50148-9
Google Scholar
[17]
I.B. Kekalo, B.A. Samarin, Physical Metallography of Precision Alloys, Metallurgiya, Moscow, (2007).
Google Scholar
[18]
М. Knobel, R. Sato Turtelli, H.R. Reichenberg, Compositional evolution and magnetic properties of nanociystalline Fe73,5Cu1Nb3Si13,5B9, J.Appl. Phys. 71 12 (1992) 6008-6012.
Google Scholar
[19]
V.E. Roshchin, A.V. Roshchin, Foundation of the production of nanocrystalline and amorphous metals, YuUrGU, Chelyabinsk, (2009).
Google Scholar
[20]
Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe‐based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys. 64 (1988) 6044-6046.
DOI: 10.1063/1.342149
Google Scholar
[21]
Y. Yoshizawa, K. Yamauchi, Fe-Based Soft Magnetic Alloys Composed of Ultrafine Grain Structure, Materials Translation, JIM. 5 4 (1990) 307-314.
DOI: 10.2320/matertrans1989.31.307
Google Scholar
[22]
G. Herzer, Nanocrystalline soft magnetic materials, Phys. Scr. 49 (1993) 307-314.
DOI: 10.1088/0031-8949/1993/t49a/054
Google Scholar
[23]
Yu.N. Goykhenberg, P.A. Gamov, M.V. Dudorov, V.E. Roshchin, The structure of 5BDSr amorphized alloy Used to make the nanocrystalline tape, Bul.SUSU. Metallurgy, 39 (2012) 128-133.
Google Scholar