The Effect of Needle Diameter on Optical Properties and Morphological Structure of La2O3- PVA Phosphor Nanofibers Prepared by Electrospinning Method

Article Preview

Abstract:

Lanthanum Oxide-Polyvinyl alcohol (La2O3-PVA) phosphor nanofibers were prepared by electrospinning and investigation of the effect of needle diameter on the optical properties and morphological structure at the nanofibers was carried out. The average diameter of phosphor nanofibers have been evaluated for five different needle diameters. The resulting phosphor nanofibers were observed and anaylzed by X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Ultraviolet-visible Spectroscopy (UV-Vis) and HPC-2 Lightsource Colorimeter. The La2O3-PVA phosphor nanofibers were used in light down-conversion of UV light (365 nm) for the white light-emitting diode (WLED) application. The chromaticity coordinates (CIE) and correlated colour temperature (CCT) were measured for different phosphor nanofibers with different sizes of needle diameter (0.45,0.55,0.65,0.75,1.1) mm. The results revealed that the phosphor nanofibers formed by needle diameter of 0.65 mm places macromolecule in a better order and the average diameter increase from 40.08 nm to 87.27 nm after annealing followed by increasing in atomic percentage of lanthanum. The energy gap of resulting phosphor nanofibers is 3.5365 eV. An optimum colour rendering index (CRI) value of 70.20 is obtained. The white phosphor exhibited CIE values of 0.3536, 0.407 and CCT of 4890 K.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 301)

Pages:

18-26

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhuo, H., Hu, J., Chen, S., & Yeung, L. (2008). Preparation of polyurethane nanofibers by electrospinning. Journal of Applied Polymer Science, 109(1), 406-411.

DOI: 10.1002/app.28067

Google Scholar

[2] H. Zhu, C.C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.S. Liu, X. Chen, Highly efficient non-rare-earth red-emitting phosphor for warm white light-emitting diodes, Nat. Commun. 5 (2014) (4312-4312).

DOI: 10.1038/ncomms5312

Google Scholar

[3] G. Li, Y. Zhang, D. Geng, M. Shang, C. Peng, Z. Cheng, J. Lin, Single-composition trichromatic white-emitting Ca4Y6(SiO4)6O: Ce3+/Mn2+/Tb3+ phosphor: luminescence and energy transfer, ACS Appl. Mater. Interfaces 4 (2012) 296–305.

DOI: 10.1021/am201335d

Google Scholar

[4] J. Liu, X. Wang, T. Xuan, C. Wang, H. Li, Z. Sun, Lu3(Al, Si)5(O, N)12: Ce3+ phosphors with broad emission band and high thermal stability for white LEDs, J. Lumin. 158 (2015) 322–327.

DOI: 10.1016/j.jlumin.2014.10.032

Google Scholar

[5] X. Wang, G. Zhou, H. Zhang, H. Li, Z. Zhang, Z. Sun, Luminescent properties of yellowish-orange Y3Al5−xSixO12−xx: Ce phosphors and their applications in warm white light-emitting diodes, J. Alloy. Compd. 519 (2012) 149–155.

DOI: 10.1016/j.jallcom.2011.12.158

Google Scholar

[6] T.-T. Xuan, J.-Q. Liu, R.-J. Xie, H.-L. Li, Z. Sun, Microwave-assisted synthesis of CdS/ZnS: Cu quantum dots for white light-emitting diodes with high color rendition, Chem. Mater. 27 (2015) 1187–1193.

DOI: 10.1021/cm503770w

Google Scholar

[7] Z. Xia, Q. Liu, Progress in discovery and structural design of color conversion phosphors for LEDs, Prog. Mater. Sci. 84 (2016) 59–117.

DOI: 10.1016/j.pmatsci.2016.09.007

Google Scholar

[8] Mccoy, B. J. (2014). Temperature effects during Ostwald ripening, (July 2003).

Google Scholar

[9] J.T. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32 (1999) 435.

Google Scholar

[10] Y. Cu, C.M. Lieber, Science 291 (2001) 851.

Google Scholar

[11] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15 (2003) 353.

Google Scholar

[12] X.Y. Zhang, C.Z. Zhao, L.Y. Chai, W. Liu, Indian J. Chem 48A (2009) 69.

Google Scholar

[13] J.A. Capobianco, F. Vetrone, J.C. Boyer, Opt. Mater. 19 (2002) 259.

Google Scholar

[14] J.A. Capobianco, F. Vetrone, J.C. Boyer, J. Phys. Chem. B 106 (2002) 1181.

Google Scholar

[15] J.A. Capobianco, J.C. Boyer, F. Vetrone, Chem. Mater. 14 (2002) 2915.

Google Scholar

[16] M.S. Palmer, M. Neurock, M.M. Olken, J. Am. Chem. Soc. 124 (2002) 8452.

Google Scholar

[17] Q. Tang, Z.P. Liu, Y.T. Qian, J. Cryst. Growth 259 (2003) 208.

Google Scholar

[18] H.W. Song, J.W. Wang, J. Lumin. 118 (2006) 220.

Google Scholar

[19] H.Q. Yu, H.W. Song, G.H. Pan, S.W. Li, Z.X. Liu, X. Bai, T. Wang, S.Z. Lu, H.F. Zhao, J. Lumin. 124 (2007) 39.

Google Scholar

[20] J. Liu, X.Y. Fei, X.B. Yu, Z.W. Tao, L.Z. Yang, S.P. Yang, J. Non-Cryst. Solids 353 (2007) 4697.

Google Scholar

[21] M. Mendez, J.J. Carvajal, Y.Cesteros, M. Aguilo´, F. Dı´az, A. Giguere, D. Drouin, E.M. Ferrero, P. Salagre, P. Formentı´n, J. Pallares, L.F. Marsal, Opt. Mater. 32 (1686(2010).

Google Scholar

[22] X.M. Liu, L.S. Yan, J.P. Zou, J. Electrochem. Soc. 157 (2010) P1.

Google Scholar

[23] G.G. Li, C. Peng, C.M. Zhang, Z.H. Xu, M.M. Shang, D.M. Yang, X.J. Kang, W.X. Wang, C.X. Li, Z.Y. Cheng, J. Lin, Inorg. Chem. 49 (2010) 10522.

Google Scholar

[24] D. Li, A. Babel, S.A. Jenekhe, Y.N. Xia, Adv. Mater. 16 (2004) (2062).

Google Scholar

[25] D. Li, G. Ouyang, J.T. McCann, Y. Xia, Nano. Lett. 5 (2005) 913.

Google Scholar

[26] Hajer, S. S., Halimah, M. K., Azmi, Z., & Azlan, M. N. (2016). Effect of samarium nanoparticles on optical properties of the zinc boro tellurite glass system. Materials Science Forum, 846(2), 63–68.

DOI: 10.4028/www.scientific.net/msf.846.63

Google Scholar

[27] S. Rosmawati, H.A.A. Sidek, A.T. Zainal, H. Mohd Zobir, Journal of Applied Sciences, 8, (2008).

Google Scholar

[28] Wang, L., Yang, X., Zhang, Q., Song, B., & Wong, C. (2017). Luminescence properties of La2O2S: Tb3+ phosphors and phosphor-embedded polymethylmethacrylate films. Materials and Design, 125(April), 100–108.

DOI: 10.1016/j.matdes.2017.04.003

Google Scholar

[29] Volodin, A. A., Fursikov, P. V., Belmesov, A. A., Shul'Ga, Y. M., Khodos, I. I., Abdusalyamova, M. N., & Tarasov, B. P. (2014). Electrical conductivity of lanthanum oxide-based composites containing carbon nanofibers. Inorganic Materials, 50(7), 673–681.

DOI: 10.1134/s0020168514070164

Google Scholar

[30] Batyreva, V.A., Kozik, B.V., Serebrennikov, V.V., and Yakunina, G.M., Sintezy soedinenii redkozemel'nykh elementov (Synthesis of RareEarth Compounds), Tomsk: Tomsk. Univ., 1983, part 1, p.22–23.

Google Scholar

[31] Fizikokhimicheskie svoistva okislov. Spravochnik (Physicochemical Properties of Oxides: A Handbook), Samsonov, G.V., Ed., Moscow: Metallurgiya, 1978, 2nd ed.

Google Scholar

[32] Patnam, H., Hussain, S. K., Bharat, L. K., & Yu, J. S. (2019). Near-ultraviolet excited Tm 3+ and Dy 3+ ions co-doped barium lanthanum silica oxide phosphors for white-light applications. Journal of Alloys and Compounds, 780, 846–855.

DOI: 10.1016/j.jallcom.2018.11.321

Google Scholar

[33] Ebara, M., Fukuda, H., & Saisho, H. (2003). The copper/zinc ratio in patients with hepatocellular carcinoma. Journal of Gastroenterology, Vol. 38, p.104–105.

DOI: 10.1007/s005350300016

Google Scholar

[34] Perumal, R. N., Subalakshmi, G., & Jayasankar, C. K. (2018). Synthesis and photoluminescence properties of Sr0.95Ba0.05La2-xO4:xRE3+(RE=Eu, Er, Ce and Ho) for WLEDs application. Journal of Alloys and Compounds, 732, 1–8.

DOI: 10.1016/j.jallcom.2017.10.158

Google Scholar

[35] Khosrow-Pour, F., Aghazadeh, M., Sabour, B., & Dalvand, S. (2013). Large-scale synthesis of uniform lanthanum oxide nanowires via template-free deposition followed by heat-treatment. Ceramics International, 39(8), 9491–9498.

DOI: 10.1016/j.ceramint.2013.05.067

Google Scholar