The Effect of Hydrogen Concentration on Chemical Vapour Deposition Synthesis of β-Ga2O3 Nanostructures

Article Preview

Abstract:

Gallium oxide (β-Ga2O3) nanostructures (NSs) have been successfully obtained through a simple scalable synthesis via thermal evaporation of gallium (III) oxide powder in hydrogen-ambient chemical vapour deposition (HACVD) without the presence of carrier gas. β-Ga2O3 was deposited on Si substrate by evaporating the source material at 1000 C in a regulated hydrogen reducing atmosphere, for 120 min growth time. Hydrogen ambient was regulated by varying the flow to observed changes in the morphological, structural and optical properties of films. The samples were characterized using high resolution X-ray diffraction (HR-XRD), field-emission scanning electron microscope (FE-SEM) and UV-vis-NIR spectrophotometer. The density and quality of NSs was observed to increase with hydrogen gas supply. The rarely reported 1) dominant XRD peak of β-Ga2O3 was obtained in the event of eliminating the carrier gas which is part of the usual recipe for CVD technique. The average crystallite size and energy gap of the synthesized material was found to decrease with increased hydrogen flow rate from 176.5 to 39.8 nm and 5.47 to 4.83 eV, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 301)

Pages:

27-34

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates, Appl. Phy.Lett.10 (2012) 0135041–3.

DOI: 10.1063/1.3674287

Google Scholar

[2] S. I. Stepanov, V.I. Nikolaev, V.E. Bougrov, A.E. Romanov, Gallium oxide: properties and applications –A Review, Rev. Adv. Mater. Sci. 44 (2016) 63–86.

Google Scholar

[3] N. Winkler, R. A. Wibowo, W. Kautek, G. Ligorio, E. J. W. List-Kratochvil, T. Dimopoulos, Nanocrystalline Ga2O3 films deposited by spray pyrolysis from water-based solutions on glass and TCO substrates, J. Mater. Chem. C 7 (2019) 69–77.

DOI: 10.1039/c8tc04157a

Google Scholar

[4] Y. Sakata, Y. Matsuda, T. Yanagida, K. Hirata, H. Imamura, K. Teramura, Effect of metal ion addition in a Ni supported Ga2O3photocatalyst on the photocatalytic overall splitting of H2O, Catal. Lett. 125 (2008) 22–26.

DOI: 10.1007/s10562-008-9557-7

Google Scholar

[5] S. M. Prokes, W. E. Carlos, E. R. Glaser, Study of defect behaviour in Ga2O3 nanowires and nano-ribbons under reducing gas annealing conditions: applications to sensing, Intl. J. of Nanotech. 5:4/5 (2008) 475–487.

DOI: 10.1504/ijnt.2008.017448

Google Scholar

[6] S. Oh, C.-K. Kim, J. Kim, High responsivity β-Ga2O3 Metal−Semiconductor−Metal solar-blind photodetectors with ultraviolet transparent graphene electrodes, ACS Photonics 5 (2018) 1123−1128.

DOI: 10.1021/acsphotonics.7b01486

Google Scholar

[7] R. Korbutowicz, J. Prazmowska (2010). Wet Thermal Oxidation of GaAs and GaN, Semiconductor Technologies, Jan Grym (Ed.), ISBN: 978-953-307-080-3, InTech.

DOI: 10.5772/8555

Google Scholar

[8] Y. Kokubun, K. Miura, F. Endo, S. Nakagomi, Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors, Appl. Phy. Lett.90 (2007) 0319121–3.

DOI: 10.1063/1.2432946

Google Scholar

[9] Q.N. Abdullah, F.K. Yam, Z. Hassan, M. Bououdina, Growth and conversion of β-Ga2O3 nanobelts into GaN nanowires via catalyst-free chemical vapor deposition technique, Superl. and Microstr. 54 (2013) 215–224.

DOI: 10.1016/j.spmi.2012.11.017

Google Scholar

[10] D. P. Butt, Y. Park, T. N. Taylor, Thermal vaporization and deposition of gallium oxide in hydrogen, J. of Nucl. Mater. 264 (1999) 71–77.

DOI: 10.1016/s0022-3115(98)00484-x

Google Scholar

[11] L. Fu, Y. Liu, P. Hu, K. Xiao, G. Yu, and D. Zhu, Ga2O3nanoribbons: synthesis, characterization, and electronic properties, Chem. Mater.15(2003)4287–4291.

Google Scholar

[12] I. P. Riera, Synthesis and characterization of Ga2O3 nanowires, Universitat de Barcelona, 08028 Barcelona, Spain, (2016) 1–5.

Google Scholar

[13] C. Cao, Z. Chen, X. An, H. Zhu, Growth and field emission properties of cactus-like gallium oxide nanostructures, J. Phys. Chem. C 112 (2008) 95–98.

DOI: 10.1021/jp0738762

Google Scholar

[14] G. Wang, J. Park, X. Kong, P. R. Wilson, Z. Chen, J.-h. Ahn, Facile synthesis and characterization of gallium oxide (β-Ga2O3) 1D nanostructures: nanowires, nanoribbons, and nanosheets, Crys. Growth and Des. 8:6 (2008) 1940–(1944).

DOI: 10.1021/cg701251j

Google Scholar

[15] L. Xijun, Q. Jieming, Beta-gallium oxide nanoflags and its ultraviolet photoluminescence performances, Nanosci. and Nanotech. Lett. 7 (2015) 152–156.

DOI: 10.1166/nnl.2015.1914

Google Scholar

[16] G. Guzman-Navarro, M. Herrera-Zaldı´var, J. Valenzuela-Benavides, D. Maestre, CL study of blue and UV emissions in β-Ga2O3 nanowires grown by thermal evaporation of GaN, J. of Appl. Phy. 110 (2011) 0343151–5.

DOI: 10.1063/1.3620986

Google Scholar

[17] J. Zhang, L. Zhang, Graphite/hydrogen reduction route to Ga2O3 nanobelts, Solid State Commu. 122:9 (2002) 493-496.

DOI: 10.1016/s0038-1098(02)00133-3

Google Scholar

[18] X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, J.J. Du, Crystalline gallium oxide nanowires: intensive blue light emitters, Chem. Phy. Lett. 328 (2000) 5–9.

DOI: 10.1016/s0009-2614(00)00899-x

Google Scholar

[19] K. F. Cai, S. Shen, C. Yana, Preparation, characterization and formation mechanism of gallium oxide nanowires, Current Appl. Phy. 8:3-4 (2008) 363–366.

DOI: 10.1016/j.cap.2007.10.033

Google Scholar

[20] I. L´opez, A. Castaldini, A. Cavallini, E. Nogales, B. M´endez, Piqueras, β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector. J. Phys D Appl. Phys. 47 (2014).

DOI: 10.1088/0022-3727/47/41/415101

Google Scholar

[21] H. Cai, H. Liu, H. Zhu, P. Shao, C. Hou, Capacitive behavior of single gallium oxide nanobelt, Materials 8 (2015) 5313–5320.

DOI: 10.3390/ma8085244

Google Scholar

[22] S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, Jr., N. A. Mahadik, H. Zhao, Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition, Appl. Phy. Lett.108 (2016)1821051–5.

DOI: 10.1063/1.4948944

Google Scholar

[23] R. Binions, C. J. Carmalt, I. P. Parkin, K. F. E. Pratt, G. A. Shaw, Gallium oxide thin films from the atmospheric pressure chemical vapor deposition reaction of gallium trichloride and methanol, Chem. Mater. 16 (2004)2489–2493.

DOI: 10.1021/cm035195z

Google Scholar

[24] J.P. Rex, Y.F. Kwong, L.H. San, The influence of deposition temperature on the structural, morphological and optical properties of micro-size structures of beta-Ga2O3, Results in Physics 14 (2019) 1–8.

DOI: 10.1016/j.rinp.2019.102475

Google Scholar

[25] M. Kumar, V. N. Singh, B. R. Mehta, J. P. Singh, Tunable synthesis of indium oxide octahedra, nanowires and tubular nanoarrow structures under oxidizing and reducing ambients, Nanotech. 20 (2009) 2356081–8.

DOI: 10.1088/0957-4484/20/23/235608

Google Scholar

[26] S. Chao, J. Deng, L. Kong, L. Chen, Z. Shen, Y. Cao, H. Zhang, X. Wang, Nanofibres synthesized via electrospinning method, IOP Conf. Series: Mater. Sci. and Engr. 275 (2017) 012046–9.

DOI: 10.1088/1757-899x/275/1/012046

Google Scholar

[27] L. X. Qian, X. Z. Liu, T. Sheng, W. L. Zhang, Y. R. Li and P. T. Lai, β-Ga2O3 solar-blind deep-ultraviolet photodetector based on a four terminal structure with or without Zener diodes, AIP Advances 6 (2016) 045009–6.

DOI: 10.1063/1.4947137

Google Scholar

[28] S. Schulz, G. Bendt, W. Assenmacher, D. Sager, G. Bacher, Low-temperature MOCVD of crystalline Ga2O3 nanowires using tBu3Ga**, Chem. Vap. Deposition 19 (2013) 347–354.

DOI: 10.1002/cvde.201307060

Google Scholar

[29] B. C. Kim, K. T. Sun, K. S. Park, K. J. Im, T. Noh, M. Y. Sung, S. Kima , β-Ga2O3 nanowires synthesized from milled GaN powders, Appl. Phy. Lett. 80:3 (2002) 479–481.

DOI: 10.1063/1.1435073

Google Scholar

[30] T. Terasako, H. Ichinotani, M. Yagi, Growth of β-gallium oxide films and nanostructures by atmospheric pressure CVD using gallium and water as source materials, Phys. Status Solidi C 12:7 (2015) 985–988.

DOI: 10.1002/pssc.201510012

Google Scholar

[31] F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, B. C. Shin, Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition, J. of Appl. Phy. 98 (2005) 0235041–6.

DOI: 10.1063/1.1980535

Google Scholar

[32] S.-L. Oua, D.-S.Wuua, Y.-C.Fu, S.-P.Liu, R.-H.Horng, L. Liu, Z.-C.Feng, Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition, Mater. Chem. and Phy. 133 (2012) 700–705.

DOI: 10.1016/j.matchemphys.2012.01.060

Google Scholar

[33] P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys. 8 (2014) 123–134.

DOI: 10.1007/s40094-014-0141-9

Google Scholar

[34] M. Saleem, L. Fang, H. B. Ruan, F. Wu, F. Huang, C.L. Xu, C.Y. Kong, Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by sol-gel method, Intl. J. Phy. Sci. 7:23 (2012) 2971–2979.

DOI: 10.5897/ijps12.219

Google Scholar

[35] V. Biju, N. Sugathan, V. Vrinda, S.L. Salini, Estimation of nanocrystalline silver from X-ray diffraction line broadening, J. Mater. Sci. 43 (2008) 1175–1179.

DOI: 10.1007/s10853-007-2300-8

Google Scholar

[36] R. Rai, T. Triloki, B. K. Singh, X-ray diffraction line profile analysis of KBr thin films, Appl. Phys. A,122:774 (2016) 1–11.

DOI: 10.1007/s00339-016-0293-3

Google Scholar

[37] E. Purushotham, N. G. Krishna, X-ray determination of crystallite size and effect of lattice strain on Debye–Waller factors of platinum nano powders, Bull. Mater. Sci. 36:6 (2013) 973–976.

DOI: 10.1007/s12034-013-0553-1

Google Scholar

[38] K. Venkateswarlu, M. Sandhyarani, T. A. Nellaippan, N. Rameshbabu, Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapetite by X-ray peak variance analysis, Procedia Mater. Sci. 5 (2014) 212–221.

DOI: 10.1016/j.mspro.2014.07.260

Google Scholar

[39] A. Yahia, A. Attaf, H. Saidi, M. Dahnoun, C. Khelifi, A. Bouhdjer, A. Saadi, H.Ezzaouia, Structural, optical, morphological and electrical properties of indium oxide thin filmsprepared by sol gel spin coating process, Surfaces and Interfaces 14 (2019) 158–165.

DOI: 10.1016/j.surfin.2018.12.012

Google Scholar

[40] M. Singh, M. Goya, K. Devla , Size and shape effects on the band gap of semiconductor compound nanomaterials, J. of Taibah University for Sci. 12:4 (2018) 470–476.

DOI: 10.1080/16583655.2018.1473946

Google Scholar

[41] S. Benramache, O. Belahssen, A. Guettaf, A. Arif, Correlation between crystallite size–optical gap energy and precursor molarities of ZnO thin films, J. Semicond. 35:4 (2014) 042001–4.

DOI: 10.1088/1674-4926/35/4/042001

Google Scholar