[1]
M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates, Appl. Phy.Lett.10 (2012) 0135041–3.
DOI: 10.1063/1.3674287
Google Scholar
[2]
S. I. Stepanov, V.I. Nikolaev, V.E. Bougrov, A.E. Romanov, Gallium oxide: properties and applications –A Review, Rev. Adv. Mater. Sci. 44 (2016) 63–86.
Google Scholar
[3]
N. Winkler, R. A. Wibowo, W. Kautek, G. Ligorio, E. J. W. List-Kratochvil, T. Dimopoulos, Nanocrystalline Ga2O3 films deposited by spray pyrolysis from water-based solutions on glass and TCO substrates, J. Mater. Chem. C 7 (2019) 69–77.
DOI: 10.1039/c8tc04157a
Google Scholar
[4]
Y. Sakata, Y. Matsuda, T. Yanagida, K. Hirata, H. Imamura, K. Teramura, Effect of metal ion addition in a Ni supported Ga2O3photocatalyst on the photocatalytic overall splitting of H2O, Catal. Lett. 125 (2008) 22–26.
DOI: 10.1007/s10562-008-9557-7
Google Scholar
[5]
S. M. Prokes, W. E. Carlos, E. R. Glaser, Study of defect behaviour in Ga2O3 nanowires and nano-ribbons under reducing gas annealing conditions: applications to sensing, Intl. J. of Nanotech. 5:4/5 (2008) 475–487.
DOI: 10.1504/ijnt.2008.017448
Google Scholar
[6]
S. Oh, C.-K. Kim, J. Kim, High responsivity β-Ga2O3 Metal−Semiconductor−Metal solar-blind photodetectors with ultraviolet transparent graphene electrodes, ACS Photonics 5 (2018) 1123−1128.
DOI: 10.1021/acsphotonics.7b01486
Google Scholar
[7]
R. Korbutowicz, J. Prazmowska (2010). Wet Thermal Oxidation of GaAs and GaN, Semiconductor Technologies, Jan Grym (Ed.), ISBN: 978-953-307-080-3, InTech.
DOI: 10.5772/8555
Google Scholar
[8]
Y. Kokubun, K. Miura, F. Endo, S. Nakagomi, Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors, Appl. Phy. Lett.90 (2007) 0319121–3.
DOI: 10.1063/1.2432946
Google Scholar
[9]
Q.N. Abdullah, F.K. Yam, Z. Hassan, M. Bououdina, Growth and conversion of β-Ga2O3 nanobelts into GaN nanowires via catalyst-free chemical vapor deposition technique, Superl. and Microstr. 54 (2013) 215–224.
DOI: 10.1016/j.spmi.2012.11.017
Google Scholar
[10]
D. P. Butt, Y. Park, T. N. Taylor, Thermal vaporization and deposition of gallium oxide in hydrogen, J. of Nucl. Mater. 264 (1999) 71–77.
DOI: 10.1016/s0022-3115(98)00484-x
Google Scholar
[11]
L. Fu, Y. Liu, P. Hu, K. Xiao, G. Yu, and D. Zhu, Ga2O3nanoribbons: synthesis, characterization, and electronic properties, Chem. Mater.15(2003)4287–4291.
Google Scholar
[12]
I. P. Riera, Synthesis and characterization of Ga2O3 nanowires, Universitat de Barcelona, 08028 Barcelona, Spain, (2016) 1–5.
Google Scholar
[13]
C. Cao, Z. Chen, X. An, H. Zhu, Growth and field emission properties of cactus-like gallium oxide nanostructures, J. Phys. Chem. C 112 (2008) 95–98.
DOI: 10.1021/jp0738762
Google Scholar
[14]
G. Wang, J. Park, X. Kong, P. R. Wilson, Z. Chen, J.-h. Ahn, Facile synthesis and characterization of gallium oxide (β-Ga2O3) 1D nanostructures: nanowires, nanoribbons, and nanosheets, Crys. Growth and Des. 8:6 (2008) 1940–(1944).
DOI: 10.1021/cg701251j
Google Scholar
[15]
L. Xijun, Q. Jieming, Beta-gallium oxide nanoflags and its ultraviolet photoluminescence performances, Nanosci. and Nanotech. Lett. 7 (2015) 152–156.
DOI: 10.1166/nnl.2015.1914
Google Scholar
[16]
G. Guzman-Navarro, M. Herrera-Zaldı´var, J. Valenzuela-Benavides, D. Maestre, CL study of blue and UV emissions in β-Ga2O3 nanowires grown by thermal evaporation of GaN, J. of Appl. Phy. 110 (2011) 0343151–5.
DOI: 10.1063/1.3620986
Google Scholar
[17]
J. Zhang, L. Zhang, Graphite/hydrogen reduction route to Ga2O3 nanobelts, Solid State Commu. 122:9 (2002) 493-496.
DOI: 10.1016/s0038-1098(02)00133-3
Google Scholar
[18]
X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, J.J. Du, Crystalline gallium oxide nanowires: intensive blue light emitters, Chem. Phy. Lett. 328 (2000) 5–9.
DOI: 10.1016/s0009-2614(00)00899-x
Google Scholar
[19]
K. F. Cai, S. Shen, C. Yana, Preparation, characterization and formation mechanism of gallium oxide nanowires, Current Appl. Phy. 8:3-4 (2008) 363–366.
DOI: 10.1016/j.cap.2007.10.033
Google Scholar
[20]
I. L´opez, A. Castaldini, A. Cavallini, E. Nogales, B. M´endez, Piqueras, β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector. J. Phys D Appl. Phys. 47 (2014).
DOI: 10.1088/0022-3727/47/41/415101
Google Scholar
[21]
H. Cai, H. Liu, H. Zhu, P. Shao, C. Hou, Capacitive behavior of single gallium oxide nanobelt, Materials 8 (2015) 5313–5320.
DOI: 10.3390/ma8085244
Google Scholar
[22]
S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, Jr., N. A. Mahadik, H. Zhao, Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition, Appl. Phy. Lett.108 (2016)1821051–5.
DOI: 10.1063/1.4948944
Google Scholar
[23]
R. Binions, C. J. Carmalt, I. P. Parkin, K. F. E. Pratt, G. A. Shaw, Gallium oxide thin films from the atmospheric pressure chemical vapor deposition reaction of gallium trichloride and methanol, Chem. Mater. 16 (2004)2489–2493.
DOI: 10.1021/cm035195z
Google Scholar
[24]
J.P. Rex, Y.F. Kwong, L.H. San, The influence of deposition temperature on the structural, morphological and optical properties of micro-size structures of beta-Ga2O3, Results in Physics 14 (2019) 1–8.
DOI: 10.1016/j.rinp.2019.102475
Google Scholar
[25]
M. Kumar, V. N. Singh, B. R. Mehta, J. P. Singh, Tunable synthesis of indium oxide octahedra, nanowires and tubular nanoarrow structures under oxidizing and reducing ambients, Nanotech. 20 (2009) 2356081–8.
DOI: 10.1088/0957-4484/20/23/235608
Google Scholar
[26]
S. Chao, J. Deng, L. Kong, L. Chen, Z. Shen, Y. Cao, H. Zhang, X. Wang, Nanofibres synthesized via electrospinning method, IOP Conf. Series: Mater. Sci. and Engr. 275 (2017) 012046–9.
DOI: 10.1088/1757-899x/275/1/012046
Google Scholar
[27]
L. X. Qian, X. Z. Liu, T. Sheng, W. L. Zhang, Y. R. Li and P. T. Lai, β-Ga2O3 solar-blind deep-ultraviolet photodetector based on a four terminal structure with or without Zener diodes, AIP Advances 6 (2016) 045009–6.
DOI: 10.1063/1.4947137
Google Scholar
[28]
S. Schulz, G. Bendt, W. Assenmacher, D. Sager, G. Bacher, Low-temperature MOCVD of crystalline Ga2O3 nanowires using tBu3Ga**, Chem. Vap. Deposition 19 (2013) 347–354.
DOI: 10.1002/cvde.201307060
Google Scholar
[29]
B. C. Kim, K. T. Sun, K. S. Park, K. J. Im, T. Noh, M. Y. Sung, S. Kima , β-Ga2O3 nanowires synthesized from milled GaN powders, Appl. Phy. Lett. 80:3 (2002) 479–481.
DOI: 10.1063/1.1435073
Google Scholar
[30]
T. Terasako, H. Ichinotani, M. Yagi, Growth of β-gallium oxide films and nanostructures by atmospheric pressure CVD using gallium and water as source materials, Phys. Status Solidi C 12:7 (2015) 985–988.
DOI: 10.1002/pssc.201510012
Google Scholar
[31]
F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, B. C. Shin, Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition, J. of Appl. Phy. 98 (2005) 0235041–6.
DOI: 10.1063/1.1980535
Google Scholar
[32]
S.-L. Oua, D.-S.Wuua, Y.-C.Fu, S.-P.Liu, R.-H.Horng, L. Liu, Z.-C.Feng, Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition, Mater. Chem. and Phy. 133 (2012) 700–705.
DOI: 10.1016/j.matchemphys.2012.01.060
Google Scholar
[33]
P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys. 8 (2014) 123–134.
DOI: 10.1007/s40094-014-0141-9
Google Scholar
[34]
M. Saleem, L. Fang, H. B. Ruan, F. Wu, F. Huang, C.L. Xu, C.Y. Kong, Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by sol-gel method, Intl. J. Phy. Sci. 7:23 (2012) 2971–2979.
DOI: 10.5897/ijps12.219
Google Scholar
[35]
V. Biju, N. Sugathan, V. Vrinda, S.L. Salini, Estimation of nanocrystalline silver from X-ray diffraction line broadening, J. Mater. Sci. 43 (2008) 1175–1179.
DOI: 10.1007/s10853-007-2300-8
Google Scholar
[36]
R. Rai, T. Triloki, B. K. Singh, X-ray diffraction line profile analysis of KBr thin films, Appl. Phys. A,122:774 (2016) 1–11.
DOI: 10.1007/s00339-016-0293-3
Google Scholar
[37]
E. Purushotham, N. G. Krishna, X-ray determination of crystallite size and effect of lattice strain on Debye–Waller factors of platinum nano powders, Bull. Mater. Sci. 36:6 (2013) 973–976.
DOI: 10.1007/s12034-013-0553-1
Google Scholar
[38]
K. Venkateswarlu, M. Sandhyarani, T. A. Nellaippan, N. Rameshbabu, Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapetite by X-ray peak variance analysis, Procedia Mater. Sci. 5 (2014) 212–221.
DOI: 10.1016/j.mspro.2014.07.260
Google Scholar
[39]
A. Yahia, A. Attaf, H. Saidi, M. Dahnoun, C. Khelifi, A. Bouhdjer, A. Saadi, H.Ezzaouia, Structural, optical, morphological and electrical properties of indium oxide thin filmsprepared by sol gel spin coating process, Surfaces and Interfaces 14 (2019) 158–165.
DOI: 10.1016/j.surfin.2018.12.012
Google Scholar
[40]
M. Singh, M. Goya, K. Devla , Size and shape effects on the band gap of semiconductor compound nanomaterials, J. of Taibah University for Sci. 12:4 (2018) 470–476.
DOI: 10.1080/16583655.2018.1473946
Google Scholar
[41]
S. Benramache, O. Belahssen, A. Guettaf, A. Arif, Correlation between crystallite size–optical gap energy and precursor molarities of ZnO thin films, J. Semicond. 35:4 (2014) 042001–4.
DOI: 10.1088/1674-4926/35/4/042001
Google Scholar