Nanostructural Characterization of Nitrogen-Doped Graphene/ Titanium Dioxide (B)/ Silicon Composite Prepared by Dispersion Method

Article Preview

Abstract:

In this study, nitrogen-doped graphene (NrGO)/ titanium dioxide (B) (TiO2(B))/ silicon composites were synthesized by dispersion method. Weight ratios of NrGO:TiO2(B):Si were varied as 9:1:0, 8:2:0, 7:1:2 and 6:2:2. NrGO was prepared from graphite by the Modified Hummers method, followed by heat treatment under nitrogen atmosphere and N-added by annealing with melamine. TiO2(B) was prepared by hydrothermal method and its phase was confirmed by X-Ray powder diffraction pattern (XRD), transmission electron microscopy (TEM) and electron diffraction pattern. Silicon was synthesized from bamboo leaves by combustion followed by magnesiothermic reduction process. The results from XRD could confirm components of the composites and the unchanged phase of TiO2(B). From scanning electron microscopy (SEM) images of the composites, together with energy dispersive spectroscopy (EDS) data, silicon particles were distributed on the surface of NrGO, and TiO2(B) nanorods which are between 0.5-5 µm in length were distributed on the surface and spaces between layers of NrGO, and NrGO/TiO2 8:2 had the most thoroughly distribution of particles.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 302)

Pages:

27-35

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Mekonnen, A. Sundararajan, A. Sarwat, review of cathode and anode materials for lithium-ion batteries. Conf. Proc. - IEEE SOUTHEASTCON (2016).

DOI: 10.1109/secon.2016.7506639

Google Scholar

[2] G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 89 (2018) 292–308.

DOI: 10.1016/j.rser.2018.03.002

Google Scholar

[3] X. Shen, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J. Energy Chem. 27 (2018) 1067–1090.

Google Scholar

[4] E. Heidari, A. Kamyabi-Gol, M. Heydarzadeh Sohi, A. Ataie, Electrode Materials for Lithium Ion Batteries: A Review. J. Ultrafine Grained Nanostructured Mater. 51 (2018) 1–12.

Google Scholar

[5] M. Brehob, R. Enbody, Y. Kwon, D. Tomanek, The potential of carbon-based memory systems. IEEE Comput. Soc. (1999) 110–114.

DOI: 10.1109/mtdt.1999.782691

Google Scholar

[6] M. Fehse, E. Ventosa, Is TiO2 (B) the Future of Titanium-Based Battery Materials. Chempluschem 80 (2015) 785–795.

DOI: 10.1002/cplu.201500038

Google Scholar

[7] M. Palacín, Recent advances in rechargeable battery materials: a chemist's perspective. Chem. Soc. Rev. 38 (2009) 2565.

DOI: 10.1039/b820555h

Google Scholar

[8] S. Silviana, J. Wardhana, Silicon Conversion From Bamboo Leaf Silica By Magnesiothermic Reduction for Development of Li-ion Baterry Anode. MATEC Web Conf. 156 (2018) 1–4.

DOI: 10.1051/matecconf/201815605021

Google Scholar

[9] I. Abdellaoui, M. Islam, T. Sakurai, S. Hamzaoui, K. Akimoto, Impurities removal process for high-purity silica production from diatomite. Hydrometallurgy 179 (2018) 207–214.

DOI: 10.1016/j.hydromet.2018.06.009

Google Scholar

[10] H. Chew, B. Hou, X. Wang, S. Xia, Cracking mechanisms in lithiated silicon thin film electrodes. Int. J. Solids Struct. 51 (2014) 4176–4187.

DOI: 10.1016/j.ijsolstr.2014.08.008

Google Scholar

[11] L. Cui, R. Ruffo, C. Chan, H. Peng, Y. Cui, Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Lett. 9 (2009) 491–495.

DOI: 10.1021/nl8036323

Google Scholar

[12] W. Liao, D. Chen, Y. Zhang, J. Zhao, Binder-free TiO2 nanowires-C/Si/C 3D network composite as high performance anode for lithium ion battery. Mater. Lett. 209 (2017) 547–550.

DOI: 10.1016/j.matlet.2017.08.084

Google Scholar

[13] N. Zhang, Y. Liu, J. Yang, S. Zhang, S. He, Preparation and characterization of nanosized multi-sphere Si-TiO2 based composites for lithium storage. Electrochim. Acta 212 (2016) 657–661.

DOI: 10.1016/j.electacta.2016.07.044

Google Scholar

[14] D. Jia, X. Li, J. Huang, Bio-inspired sandwich-structured carbon/silicon/titanium-oxide nanofibers composite as an anode material for lithium-ion batteries. Compos. Part A Appl. Sci. Manuf. 101 (2017) 273–282.

DOI: 10.1016/j.compositesa.2017.06.028

Google Scholar

[15] Z. Liu, et al. Nanostructured TiO2(B): the effect of size and shape on anode properties for Li-ion batteries. Prog. Nat. Sci. Mater. Int. 23 (2013) 235–244.

Google Scholar

[16] Y. Xie, J. Song, P. Zhou, Y. Ling, Y. Wu, Controllable Synthesis of TiO2/Graphene Nanocomposites for Long Lifetime Lithium Storage: Nanoparticles vs. Nanolayers. Electrochim. Acta 210 (2016) 358–366.

DOI: 10.1016/j.electacta.2016.05.157

Google Scholar

[17] R. Marchand, L. Brohan, M. Tournoux, TiO2 (B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 15 (1980) 1129–1133.

DOI: 10.1016/0025-5408(80)90076-8

Google Scholar

[18] A. Dylla, G. Henkelman, K.Stevenson, Lithium insertion in nanostructured TiO2(B) architectures. Acc. Chem. Res. 46 (2013) 1104–1112.

DOI: 10.1021/ar300176y

Google Scholar

[19] J. Dahn, T. Zheng, Y. Liu, J. Xue, Mechanisms for Lithium Insertion in Carbonaceous Materials. Science. 270 (1995) 590–593.

DOI: 10.1126/science.270.5236.590

Google Scholar

[20] Z. Wu, W. Ren, L. Xu, F. Li, H. Cheng, Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano 5 (2011) 5463–5471.

DOI: 10.1021/nn2006249

Google Scholar

[21] M. Kim, H. Hwang, G. Park, H Lee,. Graphene-based composite electrodes for electrochemical energy storage devices: Recent progress and challenges. FlatChem 6 (2017) 48–76.

DOI: 10.1016/j.flatc.2017.08.002

Google Scholar

[22] M. Madian, A. Eychmüller, L. Giebeler, Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries. Batteries 4 (2018) 7.

DOI: 10.3390/batteries4010007

Google Scholar

[23] X. Xin, X. Zhou, J. Wu, X. Yao, Z. Liu, Scalable Synthesis of TiO2/Graphene Nanostructured Composite with High-Rate Performance for Lithium Ion Batteries. ACS Nano 6 (2012) 11035–11043.

DOI: 10.1021/nn304725m

Google Scholar

[24] Y. Cen, Q. Qin, R. Sisson, J. Liang, Effect of Particle Size and Surface Treatment on Si/Graphene Nanocomposite Lithium-Ion Battery Anodes. Electrochim. Acta. 251 (2017) 690–698.

DOI: 10.1016/j.electacta.2017.08.139

Google Scholar

[25] Y. Chimupala, R. Drummond-Brydson, Hydrothermal Synthesis and Phase Formation Mechanism of TiO2(B) Nanorods via Alkali Metal Titanate Phase Transformation. Solid State Phenom. 283 (2018) 23–36.

DOI: 10.4028/www.scientific.net/ssp.283.23

Google Scholar

[26] V. Laokawee, et al., Preparation and Characterization of Rice Husks-Derived Silicon-Tin/Nitrogen-Doped Reduced Graphene Oxide Nanocomposites as Anode Materials for Lithium-Ion Batteries. Solid State Phenom. 283 (2018) 46–54.

DOI: 10.4028/www.scientific.net/ssp.283.46

Google Scholar

[27] N. Jarulertwathana, V. Laokawee, W. Susingrat, S.J. Hwang, T. Sarakonsri, Nano-structure tin/nitrogen-doped reduced graphene oxide composites as high capacity lithium-ion batteries anodes. J. Mater. Sci. Mater. Electron. 28 (2017) 18994–19002.

DOI: 10.1007/s10854-017-7853-y

Google Scholar

[28] P. Półrolniczak, M. Walkowiak, Titanium dioxide high aspect ratio nanoparticle hydrothermal synthesis optimization. Open Chem. 13 (2015) 75–81.

DOI: 10.1515/chem-2015-0006

Google Scholar

[29] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nature methods 9 (2012) 671-675.

DOI: 10.1038/nmeth.2089

Google Scholar