[1]
A. A. Arie, H. Kristianto, E. Demir, R. D. Cakan, Activated porous carbons derived from the Indonesian snake fruit peel as anode materials for sodium ion batteries, Mater. Chem. Phys. 217 (2018) 254-261.
DOI: 10.1016/j.matchemphys.2018.06.076
Google Scholar
[2]
A. Kurniawan, A.C. Suwandi, C. X. Lin. X. S. Ismadji L. K. Ong, A facile and green preparation of durian shell-derived carbon electrodes for electrochemical double-layer capacitors, Pro. Nat. Sci-Mater. 22 (2012) 624-630.
DOI: 10.1016/j.pnsc.2012.11.001
Google Scholar
[3]
X. Chen, J. Zhang, B. Zhang, S. Dong, X. Guo, A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor, Sci Rep. 7 (2017) 7362.
DOI: 10.1038/s41598-017-06730-x
Google Scholar
[4]
D. Lee, Y.G. Cho, H. K. Song, S. J. Chun, S. B. Park, D. H. Choi, Coffee-driven green activation of cellulose and its use for all-paper flexible supercapacitors, ACS Appl. Mater. Interfaces 9 (2017) 22568-22577.
DOI: 10.1021/acsami.7b05712
Google Scholar
[5]
H. Chen, F. Yu, G. Wang, L. Chen, B. Dai, S. Peng, Nitrogen and sulfur self-doped activated carbon directly derived from elm flower for high-performance supercapacitors, ACS. Omega 3 (2018) 4724-4732.
DOI: 10.1021/acsomega.8b00210
Google Scholar
[6]
T. Liang, C. Chen, X. Li, J. Zhang, Popcorn-derived porous carbon for energy storage and CO2 capture, Langmuir 32 (2016) 8042-9.
Google Scholar
[7]
A. E. Ismanto, S. Wang, F. E. Soetaredjo, S, Ismadji, Preparation of capacitor's electrode from cassava peel waste, Bioresour. Technol. 101 (2010) 3534-40.
DOI: 10.1016/j.biortech.2009.12.123
Google Scholar
[8]
S. R. Juan, F. Gonza´lez, C. M. Gonza´lez-Garcı, J. M. Valente Nabais, A. LuisOrtiz, Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation, J. Am. Chem. Soc. 48 (2009) 7474–7481.
DOI: 10.1021/ie9013293
Google Scholar
[9]
P. Dulyaseree, M. Fujishige, I. Yoshida, Y. Toya, Y. Banba, Y. S. Tanaka, T. Aoyama, M. Phonyiem, W. Wongwiriyapan, K. Takeuchi, M. Endo, Nitrogen-rich green leaves of papaya and Coccinia grandis as precursors of activated carbon and their electrochemical properties, RSC Adv. 7 (2017) 42064-42072.
DOI: 10.1039/c7ra06048c
Google Scholar
[10]
C. Dalai, R. Jha, V. R. Desai, Rice husk and sugarcane baggase based activated carbon for iron and manganese removal, Aquat. Procedia 4 (2015) 1126-1133.
DOI: 10.1016/j.aqpro.2015.02.143
Google Scholar
[11]
T. E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu, G. Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources 195 (2010) 912-918.
DOI: 10.1016/j.jpowsour.2009.08.048
Google Scholar
[12]
M. Wahid, D. Puthusseri, D. Phase, S. Ogale, Enhanced capacitance retention in a supercapacitor made of carbon from sugarcane bagasse by hydrothermal pretreatment, Energy Fuels 28 (2014) 4233-4240.
DOI: 10.1021/ef500342d
Google Scholar
[13]
M. R. M. Jasni, M. Deraman, M. Suleman, Z. Zainuddin, M. A. R. Othman, C. H. Chia, Supercapacitor electrodes from activation of binderless green monoliths of biomass self-adhesive carbon grains composed of varying amount of graphene additive, Ionics 24 (2017) 1195-1210.
DOI: 10.1007/s11581-017-2283-7
Google Scholar
[14]
D. Yao, Q. Hu, D. Wang, H. Yang, C. Wu, X. Wang, Hydrogen production from biomass gasification using biochar as a catalyst/support, Bioresour. Technol. 216 (2016) 159-164.
DOI: 10.1016/j.biortech.2016.05.011
Google Scholar
[15]
S. Zhang, M. Asadullah, L. Dong, H. L. Tay, C. Z. Li, An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support, Fuel 112 (2013) 646-653.
DOI: 10.1016/j.fuel.2013.03.015
Google Scholar
[16]
Y. M. Chang, W. T. Tsai, M. H. Li, Characterization of activated carbon prepared from chlorella-based algal residue, Bioresour. Technol. 184 (2015) 344-348.
DOI: 10.1016/j.biortech.2014.09.131
Google Scholar
[17]
K. Y. Foo, B. H. Hameed, Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption, Chem. Eng. J. 166 (2011) 792-795.
DOI: 10.1016/j.cej.2010.11.019
Google Scholar
[18]
F. Rodríguez-Reinoso, M. Molina-Sabio, M. T. González, The use of steam and CO2 as activating agents in the preparation of activated carbons, Carbon 33 (1995) 15-23.
DOI: 10.1016/0008-6223(94)00100-e
Google Scholar
[19]
S. R. N. Juan F. Gonza ́lez, Carmen M. Gonza ́lez-Garc ́ıa, J. M. Valente Nabais, A. Luis Ortiz, Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation, Ind. Eng. Chem. Res. 48 (2009) 7474–7481.
DOI: 10.1021/ie801848x
Google Scholar
[20]
S. Vijayakumar, S.-H. Lee, K.-S. Ryu, Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance, Electrochim. Acta 182 (2015) 979-986.
DOI: 10.1016/j.electacta.2015.10.021
Google Scholar
[21]
M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett.10 (2010) 751-800.
DOI: 10.1021/nl904286r
Google Scholar
[22]
A. Kumar, H. M. Jena, Preparation and characterization of high surface area activated carbon from fox nut (Euryale ferox ) shell by chemical activation with H3PO4, Result. Phys. 6 (2016) 651-658.
DOI: 10.1016/j.rinp.2016.03.006
Google Scholar
[23]
J. Xu, L. Zhang, G. Xu, Z. Sun, C. Zhang, X. Ma, C. Qi, L. Zhang, and D. Jia, Facile synthesis of NiS anchored carbon nanofibers for high-performance supercapacitors, Appl. Surf. Sci. 434 (2018) 112-119.
DOI: 10.1016/j.apsusc.2017.09.233
Google Scholar
[24]
C. Min Yang, Y. Jung Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns, J. Am. Chem. Soc. 129 (2007) 20-21.
DOI: 10.1021/ja065501k
Google Scholar
[25]
V. Sattayarut, T. Wanchaem, P. Ukkakimapan, V. Yordsri, P. Dulyaseree, M. Phonyiem, M. Obata, M. Fujishige, K. Takeuchi, W. Wongwiriyapan, and M. Endo, Nitrogen self-doped activated carbons via the direct activation of samanea saman leaves for high energy density supercapacitors, RSC Adv. 38 (2019) 21724-21732, (2019).
DOI: 10.1039/c9ra03437d
Google Scholar
[26]
X. Y. Chen, C. Chen, Z. J. Zhang, D. H. Xie, X. Deng, J. W. Liu, Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability, J. Power Sources 230 (2013) 50-58.
DOI: 10.1016/j.jpowsour.2012.12.054
Google Scholar
[27]
B.-L. Xing, H. Guo, L.-J. Chen, Z.-F. Chen, C.-X. Zhang, G.-X. Huang, W. Xie, J.-L. Yu, Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors", Fuel Process. Technol. 138 (2015) 734-742.
DOI: 10.1016/j.fuproc.2015.07.017
Google Scholar
[28]
M. L. Nannan Guo, Yong Wang, Xingkai Sun, Feng Wang, R. Yang, Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids, ACS Appl. Mater. Interfaces 49 (2016) 33626-33634.
DOI: 10.1021/acsami.6b11162
Google Scholar
[29]
P. W. Ruch, M. Hahn, F. Rosciano, M. Holzapfel, H. Kaiser, W. Scheifele, In situ X-ray diffraction of the intercalation of (C2H5)4N+ and BF4− into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes, Electrochim. Acta. 53 (2007) 1074-1082.
DOI: 10.1016/j.electacta.2007.01.069
Google Scholar