Investigation on Electrochemical Properties of Sugarcane Leaves - Derived Activated Carbon by Steam Activation

Article Preview

Abstract:

Sugarcane leaves (SLs) are a bio-waste from sugar production industry. To explore the value-added SLs, the SLs were used raw materials of activated carbons (ACs) by steam activation and their electrochemial properties were investigated for supercapacitor applications. The synthesis of ACs from the SLs consisted of two steps; carbonization at 500oC and steam activation. The synthesis condition was optimized by varying activation temperature (800 and 850oC) The porous structures were thoroughly formed on the surface after steam activation and the surface areas were reached to 630 and 639 m2 g-1 at the activation temperature of 800 and 850oC, respectively. The SLs-derived ACs activated at 800oC assembled in coin cell using organic electrolyte showed the highest specific capacitance of approximately 16 F g-1 with a capacitance retention of 62% when the current density increased to 1.5 A g-1. Even though there is a room to improve the electrochemical properties such as optimization of porosity and removal of inorganic component, the SLs show a potential use as raw materials of ACs for supercapacitor applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 302)

Pages:

63-70

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. A. Arie, H. Kristianto, E. Demir, R. D. Cakan, Activated porous carbons derived from the Indonesian snake fruit peel as anode materials for sodium ion batteries,‏ ‎Mater. Chem. Phys.‏ 217 (2018)‏ 254‏-261‏.

DOI: 10.1016/j.matchemphys.2018.06.076

Google Scholar

[2] A. Kurniawan, A.C. Suwandi, C. X. Lin. X. S. Ismadji L. K. Ong, A facile and green preparation of durian shell‏-derived carbon electrodes for electrochemical double‏-layer capacitors,‏ Pro. Nat. Sci-Mater. 22 (2012)‏ 624‏-630‏.

DOI: 10.1016/j.pnsc.2012.11.001

Google Scholar

[3] X. Chen, J. Zhang, B. Zhang, S. Dong, X. Guo, A novel hierarchical porous nitrogen‏-doped carbon derived from bamboo shoot for high performance supercapacitor,‏ Sci Rep. 7 (2017) 7362‏.

DOI: 10.1038/s41598-017-06730-x

Google Scholar

[4] D. Lee, Y.G. Cho, H. K. Song, S. J. Chun, S. B. Park, D. H. Choi, Coffee‏-driven green activation of cellulose and its use for all‏-paper flexible supercapacitors,‏ ACS Appl. Mater. Interfaces 9 (2017)‏ 22568‏-22577‏.

DOI: 10.1021/acsami.7b05712

Google Scholar

[5] H. Chen, F. Yu, G. Wang, L. Chen, B. Dai, S. Peng, Nitrogen and sulfur self‏-doped activated carbon directly derived from elm flower for high‏-performance supercapacitors,‏ ACS. Omega‏ 3 (2018)‏ 4724‏-4732‏.

DOI: 10.1021/acsomega.8b00210

Google Scholar

[6] T. Liang, C. Chen, X. Li, J. Zhang, Popcorn‏-derived porous carbon for energy storage and CO2 capture,‏ Langmuir‏ 32 (2016)‏ 8042‏-9‏.

Google Scholar

[7] A. E. Ismanto, S. Wang, F. E. Soetaredjo, S, Ismadji,‏ Preparation of capacitor's electrode from cassava peel waste, Bioresour. Technol. 101 (2010)‏ 3534‏-40‏.

DOI: 10.1016/j.biortech.2009.12.123

Google Scholar

[8] S. R. Juan, F. Gonza´lez, C. M. Gonza´lez‏-Garcı, J. M. Valente Nabais, A. LuisOrtiz, Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation,‏ J. Am. Chem. Soc. 48 (2009)‏ 7474‏–7481‏.

DOI: 10.1021/ie9013293

Google Scholar

[9] P. Dulyaseree, M. Fujishige, I. Yoshida, Y. Toya, Y. Banba, Y. S. Tanaka, T. Aoyama, M. Phonyiem, W. Wongwiriyapan, K. Takeuchi, M. Endo, Nitrogen‏-rich green leaves of papaya and Coccinia grandis as precursors of activated carbon and their electrochemical properties, RSC Adv.‏ 7 (2017)‏ 42064‏-42072‏.

DOI: 10.1039/c7ra06048c

Google Scholar

[10] C. Dalai, R. Jha, V. R. Desai, Rice husk and sugarcane baggase based activated carbon for iron and manganese removal,‏ Aquat. Procedia‏ 4 (2015) 1126‏-1133‏.

DOI: 10.1016/j.aqpro.2015.02.143

Google Scholar

[11] T. E. Rufford, D. Hulicova‏-Jurcakova, K. Khosla, Z. Zhu, G. Q. Lu, Microstructure and electrochemical double‏-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse,‏ J. Power Sources‏ 195 (2010)‏ 912‏-918‏.

DOI: 10.1016/j.jpowsour.2009.08.048

Google Scholar

[12] M. Wahid, D. Puthusseri, D. Phase, S. Ogale, Enhanced capacitance retention in a supercapacitor made of carbon from sugarcane bagasse by hydrothermal pretreatment, Energy Fuels 28 (2014) 4233-4240.

DOI: 10.1021/ef500342d

Google Scholar

[13] M. R. M. Jasni, M. Deraman, M. Suleman, Z. Zainuddin, M. A. R. Othman, C. H. Chia, Supercapacitor electrodes from activation of binderless green monoliths of biomass self-adhesive carbon grains composed of varying amount of graphene additive, Ionics 24 (2017) 1195-1210.

DOI: 10.1007/s11581-017-2283-7

Google Scholar

[14] D. Yao, Q. Hu, D. Wang, H. Yang, C. Wu, X. Wang, Hydrogen production from biomass gasification using biochar as a catalyst/support, Bioresour. Technol. 216 (2016) 159-164.

DOI: 10.1016/j.biortech.2016.05.011

Google Scholar

[15] S. Zhang, M. Asadullah, L. Dong, H. L. Tay, C. Z. Li, An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support, Fuel 112 (2013) 646-653.

DOI: 10.1016/j.fuel.2013.03.015

Google Scholar

[16] Y. M. Chang, W. T. Tsai, M. H. Li, Characterization of activated carbon prepared from chlorella-based algal residue, Bioresour. Technol. 184 (2015) 344-348.

DOI: 10.1016/j.biortech.2014.09.131

Google Scholar

[17] K. Y. Foo, B. H. Hameed, Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption, Chem. Eng. J. 166 (2011) 792-795.

DOI: 10.1016/j.cej.2010.11.019

Google Scholar

[18] F. Rodríguez-Reinoso, M. Molina-Sabio, M. T. González, The use of steam and CO2 as activating agents in the preparation of activated carbons, Carbon 33 (1995) 15-23.

DOI: 10.1016/0008-6223(94)00100-e

Google Scholar

[19] S. R. N. Juan F. Gonza ́lez, Carmen M. Gonza ́lez-Garc ́ıa, J. M. Valente Nabais, A. Luis Ortiz, Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation, Ind. Eng. Chem. Res. 48 (2009) 7474–7481.

DOI: 10.1021/ie801848x

Google Scholar

[20] S. Vijayakumar, S.-H. Lee, K.-S. Ryu, Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance, Electrochim. Acta 182 (2015) 979-986.

DOI: 10.1016/j.electacta.2015.10.021

Google Scholar

[21] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett.10 (2010) 751-800.

DOI: 10.1021/nl904286r

Google Scholar

[22] A. Kumar, H. M. Jena, Preparation and characterization of high surface area activated carbon from fox nut (Euryale ferox ) shell by chemical activation with H3PO4, Result. Phys. 6 (2016) 651-658.

DOI: 10.1016/j.rinp.2016.03.006

Google Scholar

[23] J. Xu, L. Zhang, G. Xu, Z. Sun, C. Zhang, X. Ma, C. Qi, L. Zhang, and D. Jia, Facile synthesis of NiS anchored carbon nanofibers for high-performance supercapacitors, Appl. Surf. Sci. 434 (2018) 112-119.

DOI: 10.1016/j.apsusc.2017.09.233

Google Scholar

[24] C. Min Yang, Y. Jung Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns, J. Am. Chem. Soc. 129 (2007) 20-21.

DOI: 10.1021/ja065501k

Google Scholar

[25] V. Sattayarut, T. Wanchaem, P. Ukkakimapan, V. Yordsri, P. Dulyaseree, M. Phonyiem, M. Obata, M. Fujishige, K. Takeuchi, W. Wongwiriyapan, and M. Endo, Nitrogen self-doped activated carbons via the direct activation of samanea saman leaves for high energy density supercapacitors, RSC Adv. 38 (2019) 21724-21732, (2019).

DOI: 10.1039/c9ra03437d

Google Scholar

[26] X. Y. Chen, C. Chen, Z. J. Zhang, D. H. Xie, X. Deng, J. W. Liu, Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability, J. Power Sources 230 (2013) 50-58.

DOI: 10.1016/j.jpowsour.2012.12.054

Google Scholar

[27] B.-L. Xing, H. Guo, L.-J. Chen, Z.-F. Chen, C.-X. Zhang, G.-X. Huang, W. Xie, J.-L. Yu, Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors", Fuel Process. Technol. 138 (2015) 734-742.

DOI: 10.1016/j.fuproc.2015.07.017

Google Scholar

[28] M. L. Nannan Guo, Yong Wang, Xingkai Sun, Feng Wang, R. Yang, Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids, ACS Appl. Mater. Interfaces 49 (2016) 33626-33634.

DOI: 10.1021/acsami.6b11162

Google Scholar

[29] P. W. Ruch, M. Hahn, F. Rosciano, M. Holzapfel, H. Kaiser, W. Scheifele, In situ X‏-ray diffraction of the intercalation of ‏(C2H5‏)4N‏+‏ and BF4‏− into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes,‏ Electrochim. Acta. 53 (2007)‏ 1074‏-1082‏.

DOI: 10.1016/j.electacta.2007.01.069

Google Scholar