Synergistic Effect of Nickel Nanoparticles and Carbon Nanotubes Buckypaper for Enhancement of Microwave Shielding Properties

Article Preview

Abstract:

Carbon nanotubes (CNTs) are considered as the most promising materials to solve the electromagnetic interference (EMI) issue. Various forms of CNTs including CNTs/polymer composites, metal nanoparticles-decorated CNTs and freestanding CNT buckypapers (CNT BPs) have been proposed to enhance shielding effectiveness. In this study, the synergistic effect of nickel nanoparticles (NPs) and relatively short CNTs for the enhancement of microwave shielding properties was investigated. CNT BPs were prepared by vacuum filtration of well-dispersed multi-walled CNTs and subsequently nickel was decorated on the CNT BPs (Ni/CNT) by pulsed DC sputtering technique with different deposition times of 0, 5, 10 and 15 min (hereinafter referred to as CNi0, CNi05, CNi10 and CNi15, respectively). The diameter of Ni/CNT increased from 8.74±0.53 to 72.5±3.2 nm and the conductivity improved from 9.57±0.87 to 12.57±0.59 S/cm when the nickel deposition time was 15 min. Nickel NPs were the mixed phases of nickel and nickel oxide with a dominant nickel phase. The shielding effectiveness at the frequency of 9.5 GHz achieved to -34.1 dB for CNi15. The enhancement of shielding effectiveness of CNi15 is attributed to the synergistic effect of CNTs and nickel NPs on wave dissipation

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 302)

Pages:

71-78

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Anil, S. Avanish Pratap, K. Saroj, A. K. Srivastava, B. Sivaiah, S. K. Dhawan, P. K. Duttab, D. Ajay, EM shielding effectiveness Pd-CNT-Cu, J. Mater. Chem. A 3 (2015) 13986-13993.

DOI: 10.1039/c4ta05749j

Google Scholar

[2] D.D.L. Chung, Materials for electromagnetic interference shielding, J. Mater. Eng. Perform. 9 (2000) 350-354.

Google Scholar

[3] F. Qin and C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys. 111 (2012) 061301.

DOI: 10.1063/1.3688435

Google Scholar

[4] W. Zhijiang, W. Lina, Z. Jigang, C. Wei, S. Baozhong, J. Zhaohua, Magnetite Nanocrystals on Multiwalled Carbon nanotubes as a synergistic microwave absorber, J. Phys. Chem. C 117 (2013) 5446-5452.

DOI: 10.1021/jp4000544

Google Scholar

[5] W. Zi Ping, L. Ting, C. De Ming, W. Gao, W. Qing Hui, Y. Yan Hong, L. Ye Sheng, X. Qian Feng, K. Ajay, A facile method to improving the electromagnetic interference shielding of a free-standing and foldable carbon nanotube mat, RSC Adv. 6 (2016) 62485-62490.

DOI: 10.1039/c6ra11507a

Google Scholar

[6] J. Li Chuan, L. Meng Zhu, Y. Ding Xiang, C. Cheng Hua, W. Hong Yuan, L. Zhong Ming, A strong and tough polymer–carbon nanotube film for flexible and efficient electromagnetic interference shielding, J. Mater. Chem. C 7 (2017) 8944-8951.

DOI: 10.1039/c7tc02259j

Google Scholar

[7] Z. Lingyu, Z. Xiaojun, C. Meng, Y. Ronghai, Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances, RSC Adv. 7 (2017) 26801-26808.

DOI: 10.1039/c7ra04456a

Google Scholar

[8] W. Fusheng, Z. Fang, L. Zhongyuan, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers, J. Phys. Chem. C 115 (2011) 14025-14030.

DOI: 10.1021/jp202078p

Google Scholar

[9] L. Na, H. Gui-Wen, L. Yuan-Qing, Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure, ACS Appl. Mater. Interfaces 9 (2017) 2973−2983.

DOI: 10.1021/acsami.6b13142.s001

Google Scholar

[10] E. R. Kumar, R. Jayaprakash, S. Kumar, Effect of annealing temperature on structural and magnetic properties of manganese substituted NiFe2O4 nanoparticles, Mater. Sci. Semicond. Proc. 17 (2014) 173-177.

DOI: 10.1016/j.mssp.2013.09.003

Google Scholar

[11] H. Xiaohu, D. Bo, R. Yong, X. Jing, Z. Chunying, Controllable synthesis and electromagnetic interference shielding properties of magnetic CoNi alloy nanoparticles coated on biocarbon nanofibers, J. Mater. Sci. Mater. Electron. 26 (2015) 2584–2588.

DOI: 10.1007/s10854-015-2727-7

Google Scholar

[12] L. Ruitao, K. Feiyu, G. Jialin, Carbon nanotubes filled with ferromagnetic alloy nanowires: lightweight and wide-band microwave absorber, Appl. Phys. Lett. 93 (2008) 223105.

DOI: 10.1063/1.3042099

Google Scholar

[13] Y. Ding-Xiang, R. Peng-Gang, P. Huan, F. Qiang, Y. Ming-Bo, L. Zhong-Ming, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite, J. Mater. Chem. 22 (2012) 18772.

DOI: 10.1039/c2jm32692b

Google Scholar

[14] Y. Lixin, L. Xiaolin, W. Changhong, MWCNT/NiO-Fe3O4 hybrid nanotubes for efficient electromagnetic wave absorption, J. Alloy. Compd. 748 (2018) 111-116.

Google Scholar

[15] S. Linna, G. Peng, W. Tingting, Chemical Ni − C bonding in Ni − carbon nanotube composite by a microwave welding method and its induced high-frequency radar frequency electromagnetic wave, ACS Appl. Mater. Interfaces 9 (2017) 40412-40419.

DOI: 10.1021/acsami.7b07136

Google Scholar

[16] W. Hongyu, Z. Dongmei, Z. Wancheng, Synthesis and microwave absorbing properties of Ni-Cu ferrite/MWCNTs composites, J. Mater. Sci. Mater. Electron. 26 (2015) 7698–7704.

DOI: 10.1007/s10854-015-3411-7

Google Scholar

[17] P. Karimi, M. Ostoja-Starzewski, I. Jasiuk, Experimental and computational study of shielding effectiveness of polycarbonate carbon nanocomposites, J. Appl. Phys. 120 (2016) 145103.

DOI: 10.1063/1.4964691

Google Scholar

[18] B. Liu, L. R. Liu, X. J. Liu, M. J. Liu and Y. S. Xiao, Variation of crystal structure in nickel nanoparticles filled in carbon nanotubes, Mater. Sci. Tech. 28 (2012) 1345-1348.

DOI: 10.1179/1743284712y.0000000085

Google Scholar

[19] S. Lu , K. Ma, X. Wang, X. Xiong , W. Xu, C. Jia, Fabrication and characterization of polymer composites surface coated Fe3O4/MWCNTs hybrid buckypaper as a novel microwave‐absorbing structure, J. Appl. Polym. Sci. 132 (2015) 41974.

DOI: 10.1002/app.41974

Google Scholar

[20] J. Wei-Luen, L. Yang-Ming, H. Weng-Sing, H. Tung-Li, H. Paul Wang, Point defects in sputtered NiO films, Appl. Phys. Lett. 94 (2009) 062103.

Google Scholar

[21] J. Soo Kang, P. Min-Ah , K. Jae-Yup, P. Sun Ha , C. Dong Young, Y. Seung-Ho, K. Jin, P. Jong woo, C. Jung-Woo, L. Kyung Jae, J. Juwon, K. Min Jae, A. Kwang-Soon, S. Yung-Eun, Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells, Sci. Rep. 5 (2015) 10450.

DOI: 10.1038/srep10450

Google Scholar

[22] B. Sourav, A. Injamamul, P. S. Sujit, B. Suryasarathi Bose, Electromagnetic screening in soft conducting composite-containing ferrites: the key role of size and shape anisotropy, Mater. Chem. Front. 1 (2017) 2574-2589. [22].

DOI: 10.1039/c7qm00305f

Google Scholar

[23] B. Viraj, P. Goutam, B. Suryasarathi, Lightweight, flexible and ultra-thin sandwich architectures for screening electromagnetic radiation, RSC Adv. 6 (2016) 70018-70024. [23].

DOI: 10.1039/c6ra14154d

Google Scholar

[24] V. Shukla, Review of electromagnetic interference shielding materials fabricated by iron ingredients, Nanoscale Adv. 1 (2019) 1640-1671.

DOI: 10.1039/c9na00108e

Google Scholar

[25] R. Dosoudil, M. Usáková, J. Franek, J. Sláma, A. Grusková, Particle Size and Concentration Effect on Permeability and EM-Wave Absorption Properties of Hybrid Ferrite Polymer Composites, IEEE Trans. Magn. 46 (2010) 436-439.

DOI: 10.1109/tmag.2009.2033347

Google Scholar

[26] J. H. Lee, D. S. Kang, S. H. Kim, M. J. Son, J. W. Choi, D. K. Choi, J. P. Choi, C. Aranas, A flexible electromagnetic interference shielding film coated with a hybrid solder-magnetic powder mixture on a PET substrate, J. Materiomics 4 (2018) 390-401.

DOI: 10.1016/j.jmat.2018.08.002

Google Scholar

[27] S. V. BerezkinaI. A. Kuznetsova, A. A. Yushkanov, Calculation of the eddy current in a small conducting spherical particle, ‎Phys. Solid State 49 (2007) 6-10.

DOI: 10.1134/s1063783407010027

Google Scholar

[28] T. Shimazu, M. Shiozaki, Effect of grain size and frequency of Eddy current loss in SI-FE sheets, IEEE Trans. Magn. 26 (1990) 1972-1974.

DOI: 10.1109/20.104587

Google Scholar

[29] L. J. Mendoza Herrera, I. J. Bruvera, L. B. Scaffardia, D. C. Schinca, Sizing and Eddy currents in magnetic core nanoparticles: an optical extinction approach, Phys. Chem. Chem. Phys. 19 (2017) 3076-3083.

DOI: 10.1039/c6cp08260b

Google Scholar

[30] N. R. Montes, P. Gorria, D. M. Blanco, A.B. Fuertes, L. F. Barquín, I. P. Orench, J. A. Blanco, Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles, J. Magn. Magn. Mater 400 (2016) 236-241.

DOI: 10.1016/j.jmmm.2015.07.060

Google Scholar

[31] A. F. Ahmad, Z. Abbas, S. AbAziz, S. J. Obaiys, M. F. Zainuddin. Synthesis and characterization of nickel oxide reinforced with polycaprolactone composite for dielectric applications by controlling nickel oxide as a filler, Results in Physics 11 (2018) 427-435.

DOI: 10.1016/j.rinp.2018.08.041

Google Scholar

[32] T. Ishizaki, K. Yatsugi, K. Akedo, Effect of particle size on the magnetic properties of Ni nanoparticles synthesized with trioctylphosphine as the capping agent, Nanomaterials 6 (2016) 172 (1-13).

DOI: 10.3390/nano6090172

Google Scholar

[33] J. Liu, M. S. Cao, Q. Luo, H. L. Shi, W. Z. Wang, and J. Yuan, Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature, ACS Appl. Mater. Interfaces 8 (2016) 22615–22622.

DOI: 10.1021/acsami.6b05480

Google Scholar

[34] Y. Bai, J. Wang, S. Lu, Z. Huang, L. Zhang, Q. Xu, S. Xu, Ni deposited onto MWCNTs buckypapers for improved broadband EMI Shielding, J. Mater. Sci.: Mater. Electron. 29 (2018) 15034–15041.

DOI: 10.1007/s10854-018-9642-7

Google Scholar

[35] J. Gyu Park, J. Louis, Q. Cheng, J. Bao, J. Smithyman, R. Liang, B. Wang, C. Zhang, J. S Brooks, L. Kramer, P. Fanchasis, D. Dorough, Electromagnetic interference shielding properties of carbon nanotube buckypaper composites, Nanotechnology 20 (2009) 415702 (1-7).

DOI: 10.1088/0957-4484/20/41/415702

Google Scholar