Effect of Process Parameters on Surface Roughness in Surface Grinding of 90CrSi Tool Steel

Article Preview

Abstract:

This paper aims to investigate the effect of process parameters on the surface roughness in suface grinding 90CrSi tool steel. In this paper, many process parameters including the coolant concentration, the coolant flow, the cross feed, the table speed and the depth of cut were taken into account. Based on conducting and analysing 25 experiments which were created by using full factorial design, the influence of the process parameters on the surface roughness was evaluated. Also, a predicted model to calculate the surface roughness was proposed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 305)

Pages:

191-197

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ioan D. Marinescu., Mike P. Hitchiner., Eckart Uhlmann., W. Brian Rowe., Ichiro Inasaki, Handbook of Machining with Grinding Wheels, (CRC Press) Sze S M 1969 Physics of Semiconductor Devices., New York: Wiley–Interscience, (2016).

DOI: 10.1201/b19462

Google Scholar

[2] W. Brian Rowe, Principle of Modern Grinding Technology, William Andrew, (2009).

Google Scholar

[3] L.M. Kozuro., A.A. Panov., E.I. Remizovski., P.S. Tristosepdov, Handbook of Grinding, Russian: Publish Housing of High-education, Minsk, (1981).

Google Scholar

[4] J.F.G. Oliveira, E.J. Silva, C. Guo, F. Hashimoto, Industrial challenges in grinding, CIRP Annals. 58(2) (2009) 663-680.

DOI: 10.1016/j.cirp.2009.09.006

Google Scholar

[5] J. Kopac, P. Krajnik, High-performance grinding-A review, Journal of Materials Processing Technology. 175(1–3) (2006) 278-284.

DOI: 10.1016/j.jmatprotec.2005.04.010

Google Scholar

[6] M. Field, R. Kegg, S. Buescher, Computerized Cost Analysis of Grinding Operations, CIRP Annals. 29(1) (1980) 233-237.

DOI: 10.1016/s0007-8506(07)61328-6

Google Scholar

[7] Vu Ngoc Pi, Phan Quang The, Vu Hong Khiem, Nguyen Ngoc Huong, Cost optimization of external cylindrical grinding, Applied Mechanics and Materials. 312 (2013) 982-989.

DOI: 10.4028/www.scientific.net/amm.312.982

Google Scholar

[8] Vu Ngoc Pi, Le Xuan Hung, Luu Anh Tung and Banh Tien Long, Cost Optimization of Internal Grinding, Journal of Materials Science and Engineering. B6(11-12) (2016) 291-296.

DOI: 10.17265/2161-6221/2016.11-12.004

Google Scholar

[9] Sanjay Agarwal, P. Venkateswara Rao, Grinding characteristics, material removal and damage formation mechanisms in high removal rate grinding of silicon carbide, International Journal of Machine Tools and Manufacture. 50(12) (2010) 1077-1087.

DOI: 10.1016/j.ijmachtools.2010.08.008

Google Scholar

[10] Anne Venu Gopal, P. Venkateswara Rao, Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding, International Journal of Machine Tools and Manufacture 43(13) (2003) 1327-1336.

DOI: 10.1016/s0890-6955(03)00165-2

Google Scholar

[11] Pandiyan .V, Caesarendra .W, Tjahjowidodo .T, Praveen .G, Predictive Modelling and Analysis of Process Parameters on Material Removal Characteristics in Abrasive Belt Grinding Process, Appl. Sci. 7 (2017) 363.

DOI: 10.3390/app7040363

Google Scholar

[12] S.J. Pande, G.K. Lal, Effect of dressing on grinding wheel performance, International Journal of Machine Tool Design and Research. 19(3) (1979) 171-179.

DOI: 10.1016/0020-7357(79)90007-6

Google Scholar

[13] Szekeres, F.Koenigsberger, F. Tobias, Objective Method for Determining Grinding Wheel Life, Proceedings of the Twelfth International Machine Tool Design and Research Conference. (1972) 229 – 233.

DOI: 10.1007/978-1-349-01397-5_29

Google Scholar

[14] Kwak, JS. & Ha, MK, Evaluation of wheel life by grinding ratio and static force, KSME International Journal. 16(9) (2002) 1072–1077.

DOI: 10.1007/bf02984426

Google Scholar

[15] Ngoc-Pi Vu, Quoc-Tuan Nguyen, Thi-Hong Tran, Hong-Ky Le, Anh-Tuan Nguyen, Anh-Tung Luu, Van-Tung Nguyen and Xuan-Hung Le, Optimization of Grinding Parameters for Minimum Grinding Time When Grinding Tablet Punches by CBN Wheel on CNC Milling Machine, Appl. Sci. 9(5) (2019) 957.

DOI: 10.3390/app9050957

Google Scholar

[16] E. Brinksmeier, C. Heinzel, M. Wittmann. Friction, Cooling and Lubrication in Grinding, CIRP Annals. 48(2) (1999) 581-598.

DOI: 10.1016/s0007-8506(07)63236-3

Google Scholar

[17] T. Tawakoli, M.J. Hadad, M.H. Sadeghi, A. Daneshi, S. Stöckert, A. Rasifard, An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication—MQL grinding, International Journal of Machine Tools and Manufacture. 49(12-13) (2009) 924-932.

DOI: 10.1016/j.ijmachtools.2009.06.015

Google Scholar

[18] M. Barczak, A.D.L. Batako, M.N. Morgan, A study of plane surface grinding under minimum quantity lubrication (MQL) conditions, International Journal of Machine Tools and Manufacture. 50(11) (2010) 977-985.

DOI: 10.1016/j.ijmachtools.2010.07.005

Google Scholar

[19] Vu Ngoc Pi, Luu Anh Tung, Le Xuan Hung and Nguyen Van Ngoc, Experimental Determination of Optimum Exchanged Diameter in Surface Grinding Process, Journal of Environmental Science and Engineering. 6 (2017) 85-89.

DOI: 10.17265/2162-5298/2017.02.004

Google Scholar

[20] B. Dasthagiri and E. Venu gopal Goud, Optimization Studies on Surface Grinding Process Parameters, International Journal of Innovative Research in Science Engineering and Technology. 4(7) 2015p 6148-6156.

Google Scholar

[21] Prashant J. Patil, C.R. Patil, Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade, Perspectives in Science. 8 (2016) 367-369.

DOI: 10.1016/j.pisc.2016.04.077

Google Scholar

[22] R. Saravanan and P. Asokan and M. Sachidanandam, A multi-objective genetic algorithm (GA) approach for optimization of surface grinding operations, International Journal of Machine Tools and Manufacture. 4 (12) (2002) 1327-1334.

DOI: 10.1016/s0890-6955(02)00074-3

Google Scholar

[23] Jae-Seob Kwak, Application of Taguchi and response surface methodologies for geometric error in surface grinding process, International Journal of Machine Tools and Manufacture. 45(3) (2005) 327-334.

DOI: 10.1016/j.ijmachtools.2004.08.007

Google Scholar

[24] Hoang Xuan Tu, Gong Jun, Le Xuan Hung, Luu Anh Tung, Vu Ngoc Pi, Calculation of Optimum Exchanged Grinding Wheel Diameter When External Grinding Tool Steel 9CrSi, International Journal of Mechanical Engineering and Robotics Research. 8(1) (2019) 59-64.

DOI: 10.18178/ijmerr.8.1.59-64

Google Scholar

[25] Li G. F, Wang L. S, Yang L. B, Multi-parameter optimization and control of the cylindrical grinding process, Journal of Materials Processing Technology. 129(1-3) (2002) 232-236.

DOI: 10.1016/s0924-0136(02)00607-6

Google Scholar

[26] R. Gupta, K.S. Shishodia, G.S. Sekhon, Optimization of grinding process parameters using enumeration method, Journal of Materials Processing Technology. 112(1) (2001) 63-67.

DOI: 10.1016/s0924-0136(01)00546-5

Google Scholar

[27] Le Xuan Hung, Vu Ngoc Pi, Ho Ky Thanh, Dang Thi Thanh Nga, Banh Tien Long, Experimental determination of Optimum exchanged diameter in internal grinding, SSRG International Journal of Mechanical Engineering. 5(1) (2018) 31-34.

DOI: 10.14445/23488360/ijme-v5i1p106

Google Scholar

[28] Le Xuan Hung, Vu Ngoc Pi, Luu Anh Tung, Hoang Xuan Tu, Gong Jun and Banh Tien Long, Determination of Optimal Exchanged Grinding Wheel Diameter when Internally Grinding Alloy Tool Steel 9CrSi, IOP Conf. Series: Materials Science and Engineering. 417 (2018) 012-026.

DOI: 10.1088/1757-899x/417/1/012026

Google Scholar

[29] Le Xuan Hung, Le Hong Ky, Tran Thi Hong, Hoang Tien Dung, Vu Thi Lien, Luu Anh Tung, Banh Tien Long and Vu Ngoc Pi, A study on cost optimization of internal cylindrical grinding, International Journal of Mechanical Engineering and Technology (IJMET). 10(1) (2019) 414–423.

DOI: 10.17265/2161-6221/2016.11-12.004

Google Scholar

[30] R. Holtermann, S. Schumann, A. Zabel, D. Biermann, A. Menzel, Numerical Determination of Process Values Influencing the Surface Integrity in Grinding, Procedia CIRP, Volume 45, 2016, Pages 39-42.

DOI: 10.1016/j.procir.2016.02.072

Google Scholar

[31] Paolo Parenti, Marco Leonesio, Giacomo Bianchi, Model-based adaptive process control for surface finish improvement in traverse grinding, Mechatronics, Volume 36, June 2016, Pages 97-111.

DOI: 10.1016/j.mechatronics.2016.04.001

Google Scholar

[32] Hemant S. Yadav, Dr. R. K. Shrivastava, Effect of Process Parameters on Surface Roughness and Mrr in Cylindrical Grinding using Response Surface Method, International Journal of Engineering Research & Technology, Vol. 3 - Issue 3 (March - 2014).

Google Scholar

[33] Prashant J. Patil, C.R. Patil, Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade, Perspectives in Science, Volume 8, September 2016, Pages 367-369.

DOI: 10.1016/j.pisc.2016.04.077

Google Scholar

[34] Jae-Seob Kwak, Sung-Bo Sim, Yeong-Deug Jeong, An analysis of grinding power and surface roughness in external cylindrical grinding of hardened SCM440 steel using the response, International Journal of Machine Tools and Manufacture, Volume 46, Issues 3–4, March 2006, Pages 304-312.

DOI: 10.1016/j.ijmachtools.2005.05.019

Google Scholar

[35] Lifeng Zhang, Chengzu Ren, Chunhui Ji, Zhiqiang Wang, Guang Chen, Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites, Applied Surface Science, Volume 366, 15 March 2016, Pages 424-431.

DOI: 10.1016/j.apsusc.2016.01.142

Google Scholar

[36] Nian Zhou, Ru Lin Peng, Rachel Pettersson, Surface integrity of 2304 duplex stainless steel after different grinding operations, Journal of Materials Processing Technology, Volume 229, March 2016, Pages 294-304.

DOI: 10.1016/j.jmatprotec.2015.09.031

Google Scholar