Preparation of Rutile TiO2 Film by Low Temperature Hydrothermal

Article Preview

Abstract:

In this paper, a simple and pollution-free low temperature hydrothermal method for preparing rutile phase TiO2 film was proposed. When TiCl4 solution hydrolyzed in ice-water mixed DI water, rutile TiO2 can be prepared at a low temperature 70 °C, which is much lower than those of conventional Sol-Gel methods and hydrothermal process. XRD was carried out to analyze the crystal structure and confirmed the TiO2 film we prepared was pure rutile phase. The surface morphology was characterized using AFM. And XPS was also carried out to illustrate the chemical state of the elements.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 305)

Pages:

65-69

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Borgarello E, Kiwi J, Pelizzetti E, et al. Nature (289) 1981 158–160.

Google Scholar

[2] Borgarello E, Kiwi J, Gratzel M, et al. Journal of the American Chemical Society. (104) 1982 2996–3002.

Google Scholar

[3] Linsebigler A L, Lu G, Yates J T. Chemical Reviews (95) 1995 735–758.

Google Scholar

[4] Akira F, Zhang X, Donald A. T. Surface Science Reports (63) 2008 515-582.

Google Scholar

[5] Wang, R, Hashimoto K, Fujishima A, et al. Nature (388) 1997 431-432.

Google Scholar

[6] Carvalho H.W.P, Batista A.P.L, Bertholdo R. et al. Journal of Material Science (45) 2010 5698.

Google Scholar

[7] Cao F, Liao Q, Deng K. et al. Nano Research (11) 2018 1722.

Google Scholar

[8] Huang C, Liu C, Di Y , et al. Applied Materials & Interfaces (13) 2016 8520-8526.

Google Scholar

[9] Sun H, Deng K, Zhu Y. et al. Advanced Materials (30) 2018 1801935.

Google Scholar

[10] Li Y, Jürgen H, Winfried S, et al. Solar Energy Materials & Solar Cells, (56) 1999 167-174.

Google Scholar

[11] Hara K, Nishikawa T, Kurashige M, et al. Solar Energy Materials and Solar Cells, (85) (2005).

Google Scholar

[12] Bickley R I, Gonzalez-Carreno T , Lees J S , et al. Journal of Solid State Chemistry, (92) 1991 178-190.

Google Scholar

[13] Augustynski J. Electrochimica Acta, (38) 1993 43-46.

Google Scholar

[14] Pedraza L.F, Vazquez A. Journal of Physics & Chemistry of Solids (60) 1999 445-448.

Google Scholar

[15] Zhang Q, Gao L, Guo J. Applied Catalysis B Environmental (26) 2000 207-215.

Google Scholar

[16] Aruna S.T, Tirosh S, Zaban A. Journal of Materials Chemistry (10) 2000 2388-2391.

Google Scholar

[17] Kumar K.N.P, Keizer, K. & Burggraaf, A.J. Journal of Materials Science Letters (13) 1994 59.

Google Scholar

[18] Mwabora J M . The Journal of Physical Chemistry B (107) 2007 5709-5716.

Google Scholar

[19] Hansen P.J, Vaithyanathan V, Wu Y, et al. Journal of Vacuum Science & Technology B (23) 2005 499-506.

Google Scholar

[20] Natarajan C, Nogami G. Journal of Electrochemical Society (27) 1996 1547-1550.

Google Scholar

[21] Alam M.J, Cameron D.C. Surface & Coatings Technology (142) 2001 776-780.

Google Scholar

[22] Diebold U. Surface Science Reports (48) 2003 5-8.

Google Scholar

[23] Tao J, Chai J, Guan L, et al. Applied Physics Letters (106) 2005 081602.

Google Scholar