[1]
K.A. Padmanabhan, S.B. Prabu, R.R. Mulyukov, A. Nazarov, R.M. Imayev, S.G. Chowdhury, Superplasticity. Common Basis for a Near-Ubiquitous Phenomenon, Springer-Verlag GmbH, Berlin, (2018).
DOI: 10.1007/978-3-642-31957-0
Google Scholar
[2]
O.A. Kaibyshev, Superplasticity of Alloys, Intermetallides and Ceramics, Springer-Verlag GmbH, Berlin, (1992).
Google Scholar
[3]
T. Langdon, An evaluation of the strain contributed by grain boundary sliding in superplasticity, Mater. Sci. Eng. A. 174 (1994) 225-230.
DOI: 10.1016/0921-5093(94)91092-8
Google Scholar
[4]
Y. Maehara, T.G. Langdon, Superplasticity of steels and ferrous alloys, Mater. Sci. Eng. A. 128 (1990) 1-13.
Google Scholar
[5]
W. Cao, C. Huang, C. Wang, H. Dong, Y. Weng, Dynamic reverse phase transformation induced high-strain-rate superplasticity in low carbon low alloy steels with commercial potential, Sci. Rep. 7 (2017) 9199.
DOI: 10.1038/s41598-017-09493-7
Google Scholar
[6]
J. Han, S.-H. Kang, S.-J. Lee, M. Kawasaki, H.-J. Lee, D. Ponge, D. Raabe, Y.-K. Lee, Superplasticity in a lean Fe-Mn-Al steel, Nat. Commun. 8 (2018) 751.
DOI: 10.1038/s41467-017-02132-9
Google Scholar
[7]
S. Li, X. Ren, X. Ji, Y. Gui, Effects of microstructure changes on the superplasticity of 2205 duplex stainless steel, Mater. Design 55 (2014) 146-151.
DOI: 10.1016/j.matdes.2013.09.042
Google Scholar
[8]
R.D.K Misra, J. Hu, I.V.S. Yashwanth, V.S.A. Challa, L.-X. Du, G.-S. Sun, Hui Xie, Phase reverted transformation-induced nanograined microalloyed steel: Low temperature superplasticity and fracture, Mater. Sci. Eng. A. 668 (2016) 105-111.
DOI: 10.1016/j.msea.2016.05.052
Google Scholar
[9]
K. Osada, S. Uekoh, K. Ebato, Superplasticity of As-rolled Duplex Stainless Steel, Trans. Iron Steel Inst. Jap. 27 (1987) 713-718.
DOI: 10.2355/isijinternational1966.27.713
Google Scholar
[10]
S. Li, X. Ren, X. Ji, Y. Gui, Effects of microstructure changes on the superplasticity of 2205 duplex stainless steel, Mater. Design. 55 (2014) 146-151.
DOI: 10.1016/j.matdes.2013.09.042
Google Scholar
[11]
Y. Yagodzinskyy, J. Pimenoff, O. Tarasenko, J. Romu, P. Nenonen, H. Hänninen, Grain Refinement Process for Superplastic Forming of AISI 301 and 304L Austenitic Stainless Steels, Mater. Sci. Technol. 20 (2004) 925-929.
DOI: 10.1179/026708304225019678
Google Scholar
[12]
Z. Cao, G. Wu, X. Sun, C. Wang, D. Ponge, W. Cao, Revealing the superplastic deformation behaviors of hot rolled 0.10C5Mn2Al steel with an initial martensitic microstructure, Scripta Mater. 152 (2018) 27-30.
DOI: 10.1016/j.scriptamat.2018.03.046
Google Scholar
[13]
V.G. Gavriljuk, H. Berns, High nitrogen steels, Springer, Berlin, (1999).
Google Scholar
[14]
R. Reed, Nitrogen in austenitic stainless steels, JOM. 41(3) (1989) 16-21.
DOI: 10.1007/bf03220991
Google Scholar
[15]
O.A. Bannykh, V.M. Blinov, On the effect of discontinuous decomposition on the structure and properties of high-nitrogen steels and on methods for suppression thereof, Steel Res. 62(1) (1991) 38-45.
DOI: 10.1002/srin.199101725
Google Scholar
[16]
V.M. Blinov, Progress in the study of high-nitrogen corrosion-resistant aging nonmagnetic vanadium steels, Russ. Metall. (Metally). 2 (2007) 127-135.
DOI: 10.1134/s0036029507020073
Google Scholar
[17]
E.G. Astafurova, V.A. Moskvina, G.G. Maier, A.I. Gordienko, A.G. Burlachenko, A.I. Smirnov, V.A. Bataev, N.K. Galchenko, S.V. Astafurov, Low-temperature tensile ductility by V-alloying of high-nitrogen CrMn and CrNiMn steels: characterization of deformation microstructure and fracture micromechanisms, Mater. Sci. Eng. A. 745 (2019) 265-278.
DOI: 10.1016/j.msea.2018.12.107
Google Scholar
[18]
K. Mineura, K. Tanaka, Superplasticity of 20Cr−10Ni−0.7N (wt%) ultra-high nitrogen austenitic stainless steel, J. Mater. Sci. 24 (1989) 2967-2970.
DOI: 10.1007/bf02385654
Google Scholar
[19]
E. Astafurova, V. Moskvina, G. Maier, E. Melnikov, N. Galchenko, S. Astafurov, A. Gordienko, A. Burlachenko, A. Smirnov, V. Bataev, A. Fortuna, The effect of test temperature on deformation microstructure and fracture mechanisms in CrMn high-nitrogen steels alloyed (0-3 wt.%) with vanadium, Mater. Sci. Forum. 941 (2018) 27-32.
DOI: 10.4028/www.scientific.net/msf.941.27
Google Scholar
[20]
A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Mater. Design. 53 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[21]
I. Sabitov, N.A. Enikeev, M.Y. Murashkin, R.Z. Valiev, Bulk nanostructured materials with multifunctional properties, Springer, Cham, (2015).
Google Scholar
[22]
E. Astafurova, V. Moskvina, M. Panchenko, G. Maier, E. Melnikov, K. Reunova, N. Galchenko, S. Astafurov, On the superplastic deformation of vanadium alloyed high-nitrogen steel, Metals. 10(1) (2020).
DOI: 10.3390/met10010027
Google Scholar