The Effect of Thermo-Mechanical Processing Regime on High-Temperature Tensile Properties of V-Alloyed High-Nitrogen Steel

Article Preview

Abstract:

The paper is devoted to an experimental investigation of a high-temperature deformation in V-alloyed high-nitrogen austenitic Fe-19Cr-22Mn-1.5V-0.3C-0.6N steel processed via different thermo-mechanical treatments. Simple thermo-mechanical processing regimes (cold rolling or rolling with single post-deformation anneal) do not allow to realize a substantial elongation in high-nitrogen steel during high-temperature tensile tests. For fine-grained austenitic structure with an average grain size of 3 µm, the maximal value of elongation to failure of 150% was realized at temperature 950 °C. Using a multi-stage thermo-mechanical treatment included cold rolling and intermediate anneals, a heterophase grain/subgrain structure with high density of deformation-induced defects and precipitates was produced. When heated to a deformation temperature, this deformation-assisted microstructure recrystallizes into a stable fine-grained structure and demonstrates the attributes of superplastic flow (values of elongation to failure higher than 400%) in the temperature range of 850-1000 °C. The maximum elongation of 900% is achieved at temperature of 950 °C and an initial strain rate of 10-4 s-1.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] K.A. Padmanabhan, S.B. Prabu, R.R. Mulyukov, A. Nazarov, R.M. Imayev, S.G. Chowdhury, Superplasticity. Common Basis for a Near-Ubiquitous Phenomenon, Springer-Verlag GmbH, Berlin, (2018).

DOI: 10.1007/978-3-642-31957-0

Google Scholar

[2] O.A. Kaibyshev, Superplasticity of Alloys, Intermetallides and Ceramics, Springer-Verlag GmbH, Berlin, (1992).

Google Scholar

[3] T. Langdon, An evaluation of the strain contributed by grain boundary sliding in superplasticity, Mater. Sci. Eng. A. 174 (1994) 225-230.

DOI: 10.1016/0921-5093(94)91092-8

Google Scholar

[4] Y. Maehara, T.G. Langdon, Superplasticity of steels and ferrous alloys, Mater. Sci. Eng. A. 128 (1990) 1-13.

Google Scholar

[5] W. Cao, C. Huang, C. Wang, H. Dong, Y. Weng, Dynamic reverse phase transformation induced high-strain-rate superplasticity in low carbon low alloy steels with commercial potential, Sci. Rep. 7 (2017) 9199.

DOI: 10.1038/s41598-017-09493-7

Google Scholar

[6] J. Han, S.-H. Kang, S.-J. Lee, M. Kawasaki, H.-J. Lee, D. Ponge, D. Raabe, Y.-K. Lee, Superplasticity in a lean Fe-Mn-Al steel, Nat. Commun. 8 (2018) 751.

DOI: 10.1038/s41467-017-02132-9

Google Scholar

[7] S. Li, X. Ren, X. Ji, Y. Gui, Effects of microstructure changes on the superplasticity of 2205 duplex stainless steel, Mater. Design 55 (2014) 146-151.

DOI: 10.1016/j.matdes.2013.09.042

Google Scholar

[8] R.D.K Misra, J. Hu, I.V.S. Yashwanth, V.S.A. Challa, L.-X. Du, G.-S. Sun, Hui Xie, Phase reverted transformation-induced nanograined microalloyed steel: Low temperature superplasticity and fracture, Mater. Sci. Eng. A. 668 (2016) 105-111.

DOI: 10.1016/j.msea.2016.05.052

Google Scholar

[9] K. Osada, S. Uekoh, K. Ebato, Superplasticity of As-rolled Duplex Stainless Steel, Trans. Iron Steel Inst. Jap. 27 (1987) 713-718.

DOI: 10.2355/isijinternational1966.27.713

Google Scholar

[10] S. Li, X. Ren, X. Ji, Y. Gui, Effects of microstructure changes on the superplasticity of 2205 duplex stainless steel, Mater. Design. 55 (2014) 146-151.

DOI: 10.1016/j.matdes.2013.09.042

Google Scholar

[11] Y. Yagodzinskyy, J. Pimenoff, O. Tarasenko, J. Romu, P. Nenonen, H. Hänninen, Grain Refinement Process for Superplastic Forming of AISI 301 and 304L Austenitic Stainless Steels, Mater. Sci. Technol. 20 (2004) 925-929.

DOI: 10.1179/026708304225019678

Google Scholar

[12] Z. Cao, G. Wu, X. Sun, C. Wang, D. Ponge, W. Cao, Revealing the superplastic deformation behaviors of hot rolled 0.10C5Mn2Al steel with an initial martensitic microstructure, Scripta Mater. 152 (2018) 27-30.

DOI: 10.1016/j.scriptamat.2018.03.046

Google Scholar

[13] V.G. Gavriljuk, H. Berns, High nitrogen steels, Springer, Berlin, (1999).

Google Scholar

[14] R. Reed, Nitrogen in austenitic stainless steels, JOM. 41(3) (1989) 16-21.

DOI: 10.1007/bf03220991

Google Scholar

[15] O.A. Bannykh, V.M. Blinov, On the effect of discontinuous decomposition on the structure and properties of high-nitrogen steels and on methods for suppression thereof, Steel Res. 62(1) (1991) 38-45.

DOI: 10.1002/srin.199101725

Google Scholar

[16] V.M. Blinov, Progress in the study of high-nitrogen corrosion-resistant aging nonmagnetic vanadium steels, Russ. Metall. (Metally). 2 (2007) 127-135.

DOI: 10.1134/s0036029507020073

Google Scholar

[17] E.G. Astafurova, V.A. Moskvina, G.G. Maier, A.I. Gordienko, A.G. Burlachenko, A.I. Smirnov, V.A. Bataev, N.K. Galchenko, S.V. Astafurov, Low-temperature tensile ductility by V-alloying of high-nitrogen CrMn and CrNiMn steels: characterization of deformation microstructure and fracture micromechanisms, Mater. Sci. Eng. A. 745 (2019) 265-278.

DOI: 10.1016/j.msea.2018.12.107

Google Scholar

[18] K. Mineura, K. Tanaka, Superplasticity of 20Cr−10Ni−0.7N (wt%) ultra-high nitrogen austenitic stainless steel, J. Mater. Sci. 24 (1989) 2967-2970.

DOI: 10.1007/bf02385654

Google Scholar

[19] E. Astafurova, V. Moskvina, G. Maier, E. Melnikov, N. Galchenko, S. Astafurov, A. Gordienko, A. Burlachenko, A. Smirnov, V. Bataev, A. Fortuna, The effect of test temperature on deformation microstructure and fracture mechanisms in CrMn high-nitrogen steels alloyed (0-3 wt.%) with vanadium, Mater. Sci. Forum. 941 (2018) 27-32.

DOI: 10.4028/www.scientific.net/msf.941.27

Google Scholar

[20] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Mater. Design. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[21] I. Sabitov, N.A. Enikeev, M.Y. Murashkin, R.Z. Valiev, Bulk nanostructured materials with multifunctional properties, Springer, Cham, (2015).

Google Scholar

[22] E. Astafurova, V. Moskvina, M. Panchenko, G. Maier, E. Melnikov, K. Reunova, N. Galchenko, S. Astafurov, On the superplastic deformation of vanadium alloyed high-nitrogen steel, Metals. 10(1) (2020).

DOI: 10.3390/met10010027

Google Scholar