Effect of Multidirectional Forging and Subsequent Annealing to the Microstructure of Al-Mg-Mn Type Alloy

Article Preview

Abstract:

The grain refinement is important to improve both service properties at room temperature and superplasticity at elevated temperatures. This study focuses on the effect of multidirectional forging in isothermal conditions on the microstructure of Al-Mg-Mn-type alloy. The evolution of dislocation and grain structure, and precipitates of Mn-rich phase during multidirectional forging in a temperature range of 200 to 500 °C was studied. Multidirectional forging at temperatures of 200 and 300 °C leads to the formation of shear bands in the deformed grains. The multidirectional forging at 400 and 500 °C leads to the formation of a bimodal grain structure with fine- and coarse-grained areas. Subsequent recrystallization annealing at 500 °C increases the grain size and decreases the fine grains fraction in the samples pre-deformed at 400-500°C, and, on the contrary, annealing leads to formation homogeneous and fine grain structure with size up to 6.5 μm in samples pre-deformed at 200 and 300 °C.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 306)

Pages:

23-32

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Nieh, T.G., Wadsworth, J., Sherby, O.D. (2005). Superplasticity in Metals and Ceramics, Cambridge University Press, New York. ISBN: 9780511525230.

DOI: 10.1017/cbo9780511525230

Google Scholar

[2] Barnes, A.J. (2001). Industrial applications of superplastic forming: trends and prospects. Mater. Sci. Forum, (357-359), 3-16. DOI: https://doi.org/10.4028/www.scientific.net/ MSF.357-359.3.

DOI: 10.4028/www.scientific.net/msf.357-359.3

Google Scholar

[3] Langdon, T.G. (2009). Seventy-five years of superplasticity: historic developments and new opportunities. J. Mater. Sci. (44), 5998-6010. DOI:https://doi.org/10.1007/s10853-009-3780-5.

DOI: 10.1007/s10853-009-3780-5

Google Scholar

[4] Jarrar, F., Sorgente, D., Aksenov, S., Enikeev, F. (2018). On the challenges and prospects of the superplastic forming process. Mater. Sci. Forum, (941), 2343-2348. DOI: https://doi.org/10.4028/www.scientific.net/MSF.941.2343.

DOI: 10.4028/www.scientific.net/msf.941.2343

Google Scholar

[5] Bate, P.S., Humphreys, F.J., Ridley, N., Zhan, B. (2005). Microstructure and texture evolution in the tension of superplastic Al–6Cu–0.4Zr. Acta Mater., (53), 3059–3069. DOI: https://doi.org/10.1016/j.actamat.2005.03.019.

DOI: 10.1016/j.actamat.2005.03.019

Google Scholar

[6] Valiev, R.Z., Salimonenko, D.A., Tsenev, N.K., Berbon, P.B., Langdon, T.G. (1997) Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scr. Mater., (37), 1945-1950. DOI: https://doi.org/10.1016/S1359-6462(97)00387-4.

DOI: 10.1016/s1359-6462(97)00387-4

Google Scholar

[7] Kishchik, A.A., Mikhaylovskaya, A.V., Kotov, A.D., Rofman, O.V., Portnoy, V.K. (2018) Al-Mg-Fe-Ni based alloy for high strain rate superplastic forming. Mater. Sci. Eng. A, (718), 190-197. DOI: https://doi.org/10.1016/j.msea.2018.01.099.

DOI: 10.1016/j.msea.2018.01.099

Google Scholar

[8] Markushev, M.V., Avtokratova, E.V., Sitdikov, O.S. (2017). Effect of the initial state on nanostructuring and strengthening of middle- and high-strength age-hardenable aluminum alloys under severe plastic deformation (Review). Lett. Mater., (7), 459-464. DOI: https://doi.org/10.22226 / 2410‑3535‑2017‑4‑459‑464.

DOI: 10.22226/2410-3535-2017-4-459-464

Google Scholar

[9] Kawasaki, M., Ahn, B., Kumar, P., Jang, J., Langdon, T.G. (2017). Nano- and Micro-Mechanical Properties of Ultrafine-Grained Materials Processed by Severe Plastic Deformation Techniques. Adv. Eng. Mater., (19), 1-17. DOI: https://doi.org/10.1002/adem.201600578.

DOI: 10.1002/adem.201600578

Google Scholar

[10] Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., Jonas, J.J. (2014). Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci., (60), 130-207. DOI: https://doi.org/10.1016/j.pmatsci.2013.09.002.

DOI: 10.1016/j.pmatsci.2013.09.002

Google Scholar

[11] Sabirov, I., Murashkin, M.Yu., Valiev, R.Z. (2013). Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Mater. Sci. Eng. A, (560), 1-24. DOI: https://doi.org/10.1016/j.msea.2012.09.020.

DOI: 10.1016/j.msea.2012.09.020

Google Scholar

[12] Estrin, Y., Vinogradov, A. (2013). Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. (61), 782-817. DOI: https://doi.org/10.1016/j.actamat.2012.10.038.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[13] Sitdikov, O.S., Avtokratova, E.V., Mukhametdinova, O.E., Garipova, R.N., Markushev, M.V. (2017). Effect of the Size of Al3(Sc,Zr) Precipitates on the Structure of Multi-Directionally Isothermally Forged Al-Mg-Sc-Zr Alloy. Phys. Met. Metallogr., (118), 1215-1224. DOI: https://doi.org/10.1134/S0031918X17120122.

DOI: 10.1134/s0031918x17120122

Google Scholar

[14] Markushev, M.V. (2011). On the methods of severe plastic deformation for bulk nanomaterials processing. Lett. Mater., (1), 36-42. DOI: https://doi.org/10.22226/2410-3535-2011-1-36-42.

DOI: 10.22226/2410-3535-2011-1-36-42

Google Scholar

[15] Mulyukov, R.R., Imayev, R.M., Nazarov, A.A. (2008). Production, properties and application prospects of bulk nanostructured materials. J. Mater. Sci., (43), 7257-7263. DOI: https://doi.org/10.1007/s10853-008-2777-9.

DOI: 10.1007/s10853-008-2777-9

Google Scholar

[16] Bereczki, P., Szombathely, V., Krallics, G. (2014). Production of ultrafine grained aluminum by cyclic severe plastic deformation at ambient temperature. IOP Conf. Ser. Mater. Sci. Eng., (63), 012-140.

DOI: 10.1088/1757-899x/63/1/012140

Google Scholar

[17] Moghanaki, K.S., Kazeminezhad, M., Loge, R. (2017). Effect of concurrent precipitation on the texture evolution during continuous heating of multi directionally forged solution treated Al-Cu-Mg alloy. Mater. Charact. (131) 399–405. DOI: https://doi.org/10.1016/j.matchar.2017.07.033.

DOI: 10.1016/j.matchar.2017.07.033

Google Scholar

[18] Cao, Y., Ni, S., Liao, X., Song, M., Zhu, Y. (2018). Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Eng. R, Rep., (133), 1-59. DOI: https://doi.org/10.1016/j.mser.2018.06.001.

DOI: 10.1016/j.mser.2018.06.001

Google Scholar

[19] Sitdikov, O., Garipova, R., Avtokratova, E., Mukhametdinova, O., Markushev, M. (2018). Effect of temperature of isothermal multidirectional forging on microstructure development in the Al-Mg alloy with nano-size aluminides of Sc and Zr. J. All. and Comp., (746), 520-531. DOI: https://doi.org/10.1016/j.jallcom.2018.02.277.

DOI: 10.1016/j.jallcom.2018.02.277

Google Scholar

[20] Gupta, R., Panthi, S.K., Srivastava, S. (2016). Assessment of various properties evolved during grain refinement through multi-directional forging. Rev. Adv. Mater. Sci., (46), 70-85. DOI:.

Google Scholar

[21] Zhao, J., Deng, Y., Zhang, J., Ma, Z., Zhang, Y. (2019). Effect of temperature and strain rate on the grain structure during the multi-directional forging of the Al-Zn-Mg-Cu alloy. Materials Science and Engineering A, (756), 119-128. DOI: https://doi.org/10.1016/j.msea.2019.04.033.

DOI: 10.1016/j.msea.2019.04.033

Google Scholar

[22] Sitdikov, O., Avtokratova, E., Markushev, M. (2019). Influence of strain rate on grain refinement in the Al-Mg-Sc-Zr alloy during high-temperature multidirectional isothermal forging. Materials Characterization, (157), 109-885. DOI: https://doi.org/10.1016/j.matchar.2019.109885.

DOI: 10.1016/j.matchar.2019.109885

Google Scholar

[23] Rao, P.N., Singh, D., Jayaganthan, R. (2014). Mechanical properties and microstructural evolution of Al6061 alloy processed by multidirectional forging at liquid nitrogen temperature. Materials & Design, (56), 97-104. DOI: https://doi.org/10.1016/j.matdes.2013.10.045.

DOI: 10.1016/j.matdes.2013.10.045

Google Scholar

[24] Azimi, A., Owolabi, G.M., Fallahdoost, H., Kumar, N., Whitworth, H., Warner, G. (2019). AA2219 Aluminum Alloy Processed via Multi-Axial Forging in Cryogenic and Ambient Environments. Journal of Materials Science Research, (8), 2.

DOI: 10.5539/jmsr.v8n2p1

Google Scholar

[25] Humphreys, F.J., Hatherly, M. (1995). Recrystallization and Related Annealing Phenomena. Pergamon Press, Oxford.

Google Scholar

[26] Sun, F., Nash, G.L., Li, Q., Liu, E., He, C., Shi, C., Zhao, N. (2017). Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys. Journal of Materials Science and Technology, 33 (9), 1015-1022. DOI: https://doi.org/10.1016/j.jmst.2016.12.003.

DOI: 10.1016/j.jmst.2016.12.003

Google Scholar

[27] Røyset, J. (2007). Scandium in Aluminium Alloys Overview: Physical Metallurgy, Properties and Applications. Metall. Sci. Technol., 25.

Google Scholar

[28] Sitdikov, O., Sakai, T., Goloborodko, A., Miura, H., Kaibyshev, R. (2004). Effect of pass strain on grain refinement in 7475 Al alloy during hot multidirectional forging. Mater. Trans., (45), 2232-2238. DOI: https://doi.org/10.2320/matertrans.45.2232.

DOI: 10.2320/matertrans.45.2232

Google Scholar

[29] Snippe, Q.H.C., Meinders, T. (2011). Mechanical experiments on the superplastic material ALNOVI-1, including leak information, Mater. Sci. Eng. A, (528), 950-960. DOI: https://doi.org/10.1016/j.msea.2010.09.075.

DOI: 10.1016/j.msea.2010.09.075

Google Scholar

[30] Palumbo, G., Piccininni, A., Guglielmi, P., Spina, R., Tricarico, L., Sorgente, D., Russello, G., Vitrano, A., Franco, A.L. (2017). Warm Forming of an AA5754 Component for Railway Vehicle Applications. Procedia Engineering, (183), 351-356. DOI: https://doi.org/10.1016/j.proeng.2017.04.051.

DOI: 10.1016/j.proeng.2017.04.051

Google Scholar

[31] Grimes, R., Dashwood, R.J., Flower, H.M. (2001). High Strain Rate Superplastic Aluminium Alloys: The Way Forward. Mater. Sci. Forum, (357-359), 357-362. DOI: https://doi.org/10.4028/www.scientific.net/MSF.357-359.357.

DOI: 10.4028/www.scientific.net/msf.357-359.357

Google Scholar

[32] Engler, O.; Miller-Jupp, S. (2016). Control of second-phase particles in the Al-Mg-Mn alloy AA 5083. J. Alloys Compd. (689), 998-1010. DOI: https://doi.org/10.1016/j.jallcom.2016.08.070.

DOI: 10.1016/j.jallcom.2016.08.070

Google Scholar

[33] Engler, O.; Liu, Z.; Kuhnke, K. (2013). Impact of homogenization on particles in the Al–Mg–Mn alloy AA 5454–Experiment and simulation. J. Alloy. Compd., (560), 111-122. DOI: https://doi.org/10.1016/j.jallcom.2013.01.163.

DOI: 10.1016/j.jallcom.2013.01.163

Google Scholar

[34] Lucadamo, G., Yang, N.Y.C., SanMarchi, C., Lavernia, E.J. (2006). Microstructure characterization in cryomilled Al 5083. Mater. Sci. Eng. A, (430), 230-241. DOI: https://doi.org/10.1016/j.msea.2006.05.039.

DOI: 10.1016/j.msea.2006.05.039

Google Scholar

[35] Verma, R., Ghosh, A.K., Kim, S., Kim, C. (1995). Grain refinement and superplasticity in 5083 Al. Materials Science and Engineering: A, (191), 1–2, 143-150. DOI: https://doi.org/10.1016/0921-5093(94)09644-9.

DOI: 10.1016/0921-5093(94)09644-9

Google Scholar

[36] Kannan, K., Hamilton, C.H., Johnson, C.H. (1998). A study of superplasticity in a modified 5083 Al-Mg-Mn alloy. Metallurgical and Materials Transactions A, (29), 4, 1211–1220. DOI: https://doi.org/10.1007/s11661-998-0248-1.

DOI: 10.1007/s11661-998-0248-1

Google Scholar

[37] Portnoy, V.K., Rylov, D.S., Levchenko, V.S., Mikhaylovskaya, A.V. (2013). The influence of chromium on the structure and superplasticity of Al–Mg–Mn alloys. Journal of Alloys and Compounds, (581), 313-317. DOI: https://doi.org/10.1016/j.jallcom.2013.07.075.

DOI: 10.1016/j.jallcom.2013.07.075

Google Scholar

[38] Kishchik, M.S., Mikhailovskaya, A.V., Levchenko, V.S., Kotov, A.D., Drits, A.M., Portnoy, V.K. (2017). Formation of Fine-Grained Structure and Superplasticity in Commercial Aluminum Alloy 1565ch. Met. Sci. Heat Treat., (58), 543-547. DOI:https://doi.org/10.1007/s11041-017-0051-y.

DOI: 10.1007/s11041-017-0051-y

Google Scholar

[39] Drits, A.M., Ovchinnikov, V.V. (2014) Mechanical properties of lap joints of 1565chM (1565) alloy sheets. Tsvetnye Metally, 11 (863), 109-114. https: //www.scopus.com/inward/record.uri?eid=2-s2.0-84923613968& partnerID=40&md5= f11a9c89d39308038a2287f77c1f0736.

Google Scholar

[40] Li, Y.J., Arnberg, L. (2003). Quantitative study on the pre-cipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization. Acta Mater., (51), 3415-3428. DOI: https://doi.org/10.1016/S1359-6454(03)00160-5.

DOI: 10.1016/s1359-6454(03)00160-5

Google Scholar

[41] Kawabata, H., Aoi I., Oh-ishi, K., Nakagaki, T., Shimizu, Y., Kuramoto, S. (2016). Improved Combination of Strength and Ductility in Zirconium-Added Al-Zn-Mg-Cu Alloy Processed with High-Pressure Torsion. Materials Transactions, (57), No. 10. 1735-1740. DOI: https://doi.org/10.2320/matertrans.M2016215.

DOI: 10.2320/matertrans.m2016215

Google Scholar

[42] Humphreys, F.J. (2001). In Encyclopedia of Materials: Science and Technology. Pergamon Press, Oxford. ISBN: 978-0-08-043152-9.

Google Scholar

[43] Raabe, D. (2014). In Physical Metallurgy (Fifth Edition). Amsterdam, Elsevier. ISBN: 978-0-444-53770-6.

Google Scholar

[44] Ahl, S.R., Simons, H., Detlefs, C., Jensen, D.J., Poulsen, H.F. (2019). Subgrain dynamics during recovery of partly recrystallized aluminium. Acta Materialia, In press. DOI: https://doi.org/10.1016/j.actamat.2019.10.042.

DOI: 10.1016/j.actamat.2019.10.042

Google Scholar

[45] Luzginova, N.V., Zhao, L., Sietsma, J. (2008). The Cementite Spheroidization Process in High-Carbon Steels with Different Chromium Contents. Metallurgical and Materials Transactions A, (39), 513-521. DOI: https://doi.org/10.1007/s11661-007-9403-3.

DOI: 10.1007/s11661-007-9403-3

Google Scholar

[46] Wu, T., Wang, M., Gao, Y., Gao Y., Li X., Zao Y., Zou Q. (2012). Effects of Plastic Warm Deformation on Cementite Spheroidization of a Eutectoid Steel. J. Iron Steel Res. Int., (19:60), DOI: https://doi.org/10.1016/S1006-706X(12)60140-X.

DOI: 10.1016/s1006-706x(12)60140-x

Google Scholar

[47] Rajeev, K. (2017). Severe Plastic Deformation of Materials. In Materials under extreme conditions. Amsterdam, Elsevier.

Google Scholar

[48] Segal, V. (2018). Review: Modes and Processes of Severe Plastic Deformation (SPD). Materials, 11 (7), 1175. DOI:.

DOI: 10.3390/ma11071175

Google Scholar

[49] Divinski, S., Padmanabhan, A.K., Wilde, G. (2011). Microstructure evolutionduring severe plastic deformation. Philosophical Magazine, (91:3), 4574-4593. DOI: https://doi.org/10.1080/14786435.2011.615349.

DOI: 10.1080/14786435.2011.615349

Google Scholar

[50] Lowe, T.C., Valiev R.Z. Investigations and Applications of Severe Plastic Deformation. Berlin, Springer. ISBN 978-0-7923-6281-4.

Google Scholar

[51] Frint, Ph., Wagner M.F.-X. (2019). Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy. Acta Materialia, (176), 1, 306-317. DOI: https://doi.org/10.1016/j.actamat.2019.07.009.

DOI: 10.1016/j.actamat.2019.07.009

Google Scholar

[52] Kumar, N., Owolabi, G.M., Jayaganthan, R. (2019). Al 6082 alloy strengthening through low strain multi-axial forging. Materials Characterization, (155), 109-761. DOI: https://doi.org/10.1016/j.matchar.2019.06.003.

DOI: 10.1016/j.matchar.2019.06.003

Google Scholar

[53] Zhu, Q.F., Zhao, Z.H., Zuo, Y.B., Li, L., Cui, J.Z. (2014). The Structure Evolution of a 99.995 Percent High Purity Aluminum during Multi-Forging Process in Room Temperature. Materials Science Forum, (794-796), 876-881. DOI: https://doi.org/10.4028/www.scientific.net/MSF.794-796.876.

DOI: 10.4028/www.scientific.net/msf.794-796.876

Google Scholar

[54] Nikulin, I., Kipelova, A., Malopheyev, S., Kaibyshev, R. (2011). Development of ultra-fine grained structure in an Al-5.4%Mg-0.5%Mn alloy subjected to severe plastic deformation Materials Transactions, 52 (5), 882-889. DOI: https://doi.org/10.2320/matertrans.L-MZ201115.

DOI: 10.2320/matertrans.l-mz201115

Google Scholar