[1]
Nieh, T.G., Wadsworth, J., Sherby, O.D. (2005). Superplasticity in Metals and Ceramics, Cambridge University Press, New York. ISBN: 9780511525230.
DOI: 10.1017/cbo9780511525230
Google Scholar
[2]
Barnes, A.J. (2001). Industrial applications of superplastic forming: trends and prospects. Mater. Sci. Forum, (357-359), 3-16. DOI: https://doi.org/10.4028/www.scientific.net/ MSF.357-359.3.
DOI: 10.4028/www.scientific.net/msf.357-359.3
Google Scholar
[3]
Langdon, T.G. (2009). Seventy-five years of superplasticity: historic developments and new opportunities. J. Mater. Sci. (44), 5998-6010. DOI:https://doi.org/10.1007/s10853-009-3780-5.
DOI: 10.1007/s10853-009-3780-5
Google Scholar
[4]
Jarrar, F., Sorgente, D., Aksenov, S., Enikeev, F. (2018). On the challenges and prospects of the superplastic forming process. Mater. Sci. Forum, (941), 2343-2348. DOI: https://doi.org/10.4028/www.scientific.net/MSF.941.2343.
DOI: 10.4028/www.scientific.net/msf.941.2343
Google Scholar
[5]
Bate, P.S., Humphreys, F.J., Ridley, N., Zhan, B. (2005). Microstructure and texture evolution in the tension of superplastic Al–6Cu–0.4Zr. Acta Mater., (53), 3059–3069. DOI: https://doi.org/10.1016/j.actamat.2005.03.019.
DOI: 10.1016/j.actamat.2005.03.019
Google Scholar
[6]
Valiev, R.Z., Salimonenko, D.A., Tsenev, N.K., Berbon, P.B., Langdon, T.G. (1997) Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scr. Mater., (37), 1945-1950. DOI: https://doi.org/10.1016/S1359-6462(97)00387-4.
DOI: 10.1016/s1359-6462(97)00387-4
Google Scholar
[7]
Kishchik, A.A., Mikhaylovskaya, A.V., Kotov, A.D., Rofman, O.V., Portnoy, V.K. (2018) Al-Mg-Fe-Ni based alloy for high strain rate superplastic forming. Mater. Sci. Eng. A, (718), 190-197. DOI: https://doi.org/10.1016/j.msea.2018.01.099.
DOI: 10.1016/j.msea.2018.01.099
Google Scholar
[8]
Markushev, M.V., Avtokratova, E.V., Sitdikov, O.S. (2017). Effect of the initial state on nanostructuring and strengthening of middle- and high-strength age-hardenable aluminum alloys under severe plastic deformation (Review). Lett. Mater., (7), 459-464. DOI: https://doi.org/10.22226 / 2410‑3535‑2017‑4‑459‑464.
DOI: 10.22226/2410-3535-2017-4-459-464
Google Scholar
[9]
Kawasaki, M., Ahn, B., Kumar, P., Jang, J., Langdon, T.G. (2017). Nano- and Micro-Mechanical Properties of Ultrafine-Grained Materials Processed by Severe Plastic Deformation Techniques. Adv. Eng. Mater., (19), 1-17. DOI: https://doi.org/10.1002/adem.201600578.
DOI: 10.1002/adem.201600578
Google Scholar
[10]
Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., Jonas, J.J. (2014). Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci., (60), 130-207. DOI: https://doi.org/10.1016/j.pmatsci.2013.09.002.
DOI: 10.1016/j.pmatsci.2013.09.002
Google Scholar
[11]
Sabirov, I., Murashkin, M.Yu., Valiev, R.Z. (2013). Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Mater. Sci. Eng. A, (560), 1-24. DOI: https://doi.org/10.1016/j.msea.2012.09.020.
DOI: 10.1016/j.msea.2012.09.020
Google Scholar
[12]
Estrin, Y., Vinogradov, A. (2013). Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. (61), 782-817. DOI: https://doi.org/10.1016/j.actamat.2012.10.038.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[13]
Sitdikov, O.S., Avtokratova, E.V., Mukhametdinova, O.E., Garipova, R.N., Markushev, M.V. (2017). Effect of the Size of Al3(Sc,Zr) Precipitates on the Structure of Multi-Directionally Isothermally Forged Al-Mg-Sc-Zr Alloy. Phys. Met. Metallogr., (118), 1215-1224. DOI: https://doi.org/10.1134/S0031918X17120122.
DOI: 10.1134/s0031918x17120122
Google Scholar
[14]
Markushev, M.V. (2011). On the methods of severe plastic deformation for bulk nanomaterials processing. Lett. Mater., (1), 36-42. DOI: https://doi.org/10.22226/2410-3535-2011-1-36-42.
DOI: 10.22226/2410-3535-2011-1-36-42
Google Scholar
[15]
Mulyukov, R.R., Imayev, R.M., Nazarov, A.A. (2008). Production, properties and application prospects of bulk nanostructured materials. J. Mater. Sci., (43), 7257-7263. DOI: https://doi.org/10.1007/s10853-008-2777-9.
DOI: 10.1007/s10853-008-2777-9
Google Scholar
[16]
Bereczki, P., Szombathely, V., Krallics, G. (2014). Production of ultrafine grained aluminum by cyclic severe plastic deformation at ambient temperature. IOP Conf. Ser. Mater. Sci. Eng., (63), 012-140.
DOI: 10.1088/1757-899x/63/1/012140
Google Scholar
[17]
Moghanaki, K.S., Kazeminezhad, M., Loge, R. (2017). Effect of concurrent precipitation on the texture evolution during continuous heating of multi directionally forged solution treated Al-Cu-Mg alloy. Mater. Charact. (131) 399–405. DOI: https://doi.org/10.1016/j.matchar.2017.07.033.
DOI: 10.1016/j.matchar.2017.07.033
Google Scholar
[18]
Cao, Y., Ni, S., Liao, X., Song, M., Zhu, Y. (2018). Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Eng. R, Rep., (133), 1-59. DOI: https://doi.org/10.1016/j.mser.2018.06.001.
DOI: 10.1016/j.mser.2018.06.001
Google Scholar
[19]
Sitdikov, O., Garipova, R., Avtokratova, E., Mukhametdinova, O., Markushev, M. (2018). Effect of temperature of isothermal multidirectional forging on microstructure development in the Al-Mg alloy with nano-size aluminides of Sc and Zr. J. All. and Comp., (746), 520-531. DOI: https://doi.org/10.1016/j.jallcom.2018.02.277.
DOI: 10.1016/j.jallcom.2018.02.277
Google Scholar
[20]
Gupta, R., Panthi, S.K., Srivastava, S. (2016). Assessment of various properties evolved during grain refinement through multi-directional forging. Rev. Adv. Mater. Sci., (46), 70-85. DOI:.
Google Scholar
[21]
Zhao, J., Deng, Y., Zhang, J., Ma, Z., Zhang, Y. (2019). Effect of temperature and strain rate on the grain structure during the multi-directional forging of the Al-Zn-Mg-Cu alloy. Materials Science and Engineering A, (756), 119-128. DOI: https://doi.org/10.1016/j.msea.2019.04.033.
DOI: 10.1016/j.msea.2019.04.033
Google Scholar
[22]
Sitdikov, O., Avtokratova, E., Markushev, M. (2019). Influence of strain rate on grain refinement in the Al-Mg-Sc-Zr alloy during high-temperature multidirectional isothermal forging. Materials Characterization, (157), 109-885. DOI: https://doi.org/10.1016/j.matchar.2019.109885.
DOI: 10.1016/j.matchar.2019.109885
Google Scholar
[23]
Rao, P.N., Singh, D., Jayaganthan, R. (2014). Mechanical properties and microstructural evolution of Al6061 alloy processed by multidirectional forging at liquid nitrogen temperature. Materials & Design, (56), 97-104. DOI: https://doi.org/10.1016/j.matdes.2013.10.045.
DOI: 10.1016/j.matdes.2013.10.045
Google Scholar
[24]
Azimi, A., Owolabi, G.M., Fallahdoost, H., Kumar, N., Whitworth, H., Warner, G. (2019). AA2219 Aluminum Alloy Processed via Multi-Axial Forging in Cryogenic and Ambient Environments. Journal of Materials Science Research, (8), 2.
DOI: 10.5539/jmsr.v8n2p1
Google Scholar
[25]
Humphreys, F.J., Hatherly, M. (1995). Recrystallization and Related Annealing Phenomena. Pergamon Press, Oxford.
Google Scholar
[26]
Sun, F., Nash, G.L., Li, Q., Liu, E., He, C., Shi, C., Zhao, N. (2017). Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys. Journal of Materials Science and Technology, 33 (9), 1015-1022. DOI: https://doi.org/10.1016/j.jmst.2016.12.003.
DOI: 10.1016/j.jmst.2016.12.003
Google Scholar
[27]
Røyset, J. (2007). Scandium in Aluminium Alloys Overview: Physical Metallurgy, Properties and Applications. Metall. Sci. Technol., 25.
Google Scholar
[28]
Sitdikov, O., Sakai, T., Goloborodko, A., Miura, H., Kaibyshev, R. (2004). Effect of pass strain on grain refinement in 7475 Al alloy during hot multidirectional forging. Mater. Trans., (45), 2232-2238. DOI: https://doi.org/10.2320/matertrans.45.2232.
DOI: 10.2320/matertrans.45.2232
Google Scholar
[29]
Snippe, Q.H.C., Meinders, T. (2011). Mechanical experiments on the superplastic material ALNOVI-1, including leak information, Mater. Sci. Eng. A, (528), 950-960. DOI: https://doi.org/10.1016/j.msea.2010.09.075.
DOI: 10.1016/j.msea.2010.09.075
Google Scholar
[30]
Palumbo, G., Piccininni, A., Guglielmi, P., Spina, R., Tricarico, L., Sorgente, D., Russello, G., Vitrano, A., Franco, A.L. (2017). Warm Forming of an AA5754 Component for Railway Vehicle Applications. Procedia Engineering, (183), 351-356. DOI: https://doi.org/10.1016/j.proeng.2017.04.051.
DOI: 10.1016/j.proeng.2017.04.051
Google Scholar
[31]
Grimes, R., Dashwood, R.J., Flower, H.M. (2001). High Strain Rate Superplastic Aluminium Alloys: The Way Forward. Mater. Sci. Forum, (357-359), 357-362. DOI: https://doi.org/10.4028/www.scientific.net/MSF.357-359.357.
DOI: 10.4028/www.scientific.net/msf.357-359.357
Google Scholar
[32]
Engler, O.; Miller-Jupp, S. (2016). Control of second-phase particles in the Al-Mg-Mn alloy AA 5083. J. Alloys Compd. (689), 998-1010. DOI: https://doi.org/10.1016/j.jallcom.2016.08.070.
DOI: 10.1016/j.jallcom.2016.08.070
Google Scholar
[33]
Engler, O.; Liu, Z.; Kuhnke, K. (2013). Impact of homogenization on particles in the Al–Mg–Mn alloy AA 5454–Experiment and simulation. J. Alloy. Compd., (560), 111-122. DOI: https://doi.org/10.1016/j.jallcom.2013.01.163.
DOI: 10.1016/j.jallcom.2013.01.163
Google Scholar
[34]
Lucadamo, G., Yang, N.Y.C., SanMarchi, C., Lavernia, E.J. (2006). Microstructure characterization in cryomilled Al 5083. Mater. Sci. Eng. A, (430), 230-241. DOI: https://doi.org/10.1016/j.msea.2006.05.039.
DOI: 10.1016/j.msea.2006.05.039
Google Scholar
[35]
Verma, R., Ghosh, A.K., Kim, S., Kim, C. (1995). Grain refinement and superplasticity in 5083 Al. Materials Science and Engineering: A, (191), 1–2, 143-150. DOI: https://doi.org/10.1016/0921-5093(94)09644-9.
DOI: 10.1016/0921-5093(94)09644-9
Google Scholar
[36]
Kannan, K., Hamilton, C.H., Johnson, C.H. (1998). A study of superplasticity in a modified 5083 Al-Mg-Mn alloy. Metallurgical and Materials Transactions A, (29), 4, 1211–1220. DOI: https://doi.org/10.1007/s11661-998-0248-1.
DOI: 10.1007/s11661-998-0248-1
Google Scholar
[37]
Portnoy, V.K., Rylov, D.S., Levchenko, V.S., Mikhaylovskaya, A.V. (2013). The influence of chromium on the structure and superplasticity of Al–Mg–Mn alloys. Journal of Alloys and Compounds, (581), 313-317. DOI: https://doi.org/10.1016/j.jallcom.2013.07.075.
DOI: 10.1016/j.jallcom.2013.07.075
Google Scholar
[38]
Kishchik, M.S., Mikhailovskaya, A.V., Levchenko, V.S., Kotov, A.D., Drits, A.M., Portnoy, V.K. (2017). Formation of Fine-Grained Structure and Superplasticity in Commercial Aluminum Alloy 1565ch. Met. Sci. Heat Treat., (58), 543-547. DOI:https://doi.org/10.1007/s11041-017-0051-y.
DOI: 10.1007/s11041-017-0051-y
Google Scholar
[39]
Drits, A.M., Ovchinnikov, V.V. (2014) Mechanical properties of lap joints of 1565chM (1565) alloy sheets. Tsvetnye Metally, 11 (863), 109-114. https: //www.scopus.com/inward/record.uri?eid=2-s2.0-84923613968& partnerID=40&md5= f11a9c89d39308038a2287f77c1f0736.
Google Scholar
[40]
Li, Y.J., Arnberg, L. (2003). Quantitative study on the pre-cipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization. Acta Mater., (51), 3415-3428. DOI: https://doi.org/10.1016/S1359-6454(03)00160-5.
DOI: 10.1016/s1359-6454(03)00160-5
Google Scholar
[41]
Kawabata, H., Aoi I., Oh-ishi, K., Nakagaki, T., Shimizu, Y., Kuramoto, S. (2016). Improved Combination of Strength and Ductility in Zirconium-Added Al-Zn-Mg-Cu Alloy Processed with High-Pressure Torsion. Materials Transactions, (57), No. 10. 1735-1740. DOI: https://doi.org/10.2320/matertrans.M2016215.
DOI: 10.2320/matertrans.m2016215
Google Scholar
[42]
Humphreys, F.J. (2001). In Encyclopedia of Materials: Science and Technology. Pergamon Press, Oxford. ISBN: 978-0-08-043152-9.
Google Scholar
[43]
Raabe, D. (2014). In Physical Metallurgy (Fifth Edition). Amsterdam, Elsevier. ISBN: 978-0-444-53770-6.
Google Scholar
[44]
Ahl, S.R., Simons, H., Detlefs, C., Jensen, D.J., Poulsen, H.F. (2019). Subgrain dynamics during recovery of partly recrystallized aluminium. Acta Materialia, In press. DOI: https://doi.org/10.1016/j.actamat.2019.10.042.
DOI: 10.1016/j.actamat.2019.10.042
Google Scholar
[45]
Luzginova, N.V., Zhao, L., Sietsma, J. (2008). The Cementite Spheroidization Process in High-Carbon Steels with Different Chromium Contents. Metallurgical and Materials Transactions A, (39), 513-521. DOI: https://doi.org/10.1007/s11661-007-9403-3.
DOI: 10.1007/s11661-007-9403-3
Google Scholar
[46]
Wu, T., Wang, M., Gao, Y., Gao Y., Li X., Zao Y., Zou Q. (2012). Effects of Plastic Warm Deformation on Cementite Spheroidization of a Eutectoid Steel. J. Iron Steel Res. Int., (19:60), DOI: https://doi.org/10.1016/S1006-706X(12)60140-X.
DOI: 10.1016/s1006-706x(12)60140-x
Google Scholar
[47]
Rajeev, K. (2017). Severe Plastic Deformation of Materials. In Materials under extreme conditions. Amsterdam, Elsevier.
Google Scholar
[48]
Segal, V. (2018). Review: Modes and Processes of Severe Plastic Deformation (SPD). Materials, 11 (7), 1175. DOI:.
DOI: 10.3390/ma11071175
Google Scholar
[49]
Divinski, S., Padmanabhan, A.K., Wilde, G. (2011). Microstructure evolutionduring severe plastic deformation. Philosophical Magazine, (91:3), 4574-4593. DOI: https://doi.org/10.1080/14786435.2011.615349.
DOI: 10.1080/14786435.2011.615349
Google Scholar
[50]
Lowe, T.C., Valiev R.Z. Investigations and Applications of Severe Plastic Deformation. Berlin, Springer. ISBN 978-0-7923-6281-4.
Google Scholar
[51]
Frint, Ph., Wagner M.F.-X. (2019). Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy. Acta Materialia, (176), 1, 306-317. DOI: https://doi.org/10.1016/j.actamat.2019.07.009.
DOI: 10.1016/j.actamat.2019.07.009
Google Scholar
[52]
Kumar, N., Owolabi, G.M., Jayaganthan, R. (2019). Al 6082 alloy strengthening through low strain multi-axial forging. Materials Characterization, (155), 109-761. DOI: https://doi.org/10.1016/j.matchar.2019.06.003.
DOI: 10.1016/j.matchar.2019.06.003
Google Scholar
[53]
Zhu, Q.F., Zhao, Z.H., Zuo, Y.B., Li, L., Cui, J.Z. (2014). The Structure Evolution of a 99.995 Percent High Purity Aluminum during Multi-Forging Process in Room Temperature. Materials Science Forum, (794-796), 876-881. DOI: https://doi.org/10.4028/www.scientific.net/MSF.794-796.876.
DOI: 10.4028/www.scientific.net/msf.794-796.876
Google Scholar
[54]
Nikulin, I., Kipelova, A., Malopheyev, S., Kaibyshev, R. (2011). Development of ultra-fine grained structure in an Al-5.4%Mg-0.5%Mn alloy subjected to severe plastic deformation Materials Transactions, 52 (5), 882-889. DOI: https://doi.org/10.2320/matertrans.L-MZ201115.
DOI: 10.2320/matertrans.l-mz201115
Google Scholar