Characteristics of Electron Transport Study of Composited Graphene-Zinc Oxide Thin Film Photoanode for Dye-Sensitized Solar Cells

Article Preview

Abstract:

Graphene-Zinc Oxide (Gr-ZnO) nanocomposites films were successfully synthesized via facile electrodeposition method in an aqueous solution under Gr concentration conditions. Gr, as a highly conductive carbon, acts as an anchor for ZnO nanosheets and plays a substantial role in controlling the degree of dispersion of ZnO nanosheets onto indium-doped tin oxide (ITO) substrate to form Gr-ZnO nanocomposite. Atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) analysis of Gr-ZnO nanocomposite samples confirmed that the presence of ZnO nanosheets with a high degree of dispersity and crystallinity which is well linked to the thin layer of Gr nanoparticle on ITO substrate. The surface roughness of the films found increased to ~270 nm on Gr-ZnO as compared to Gr ~44 nm and ZnO ~3 nm. Further, the x-ray diffraction spectroscopy (XRD) analysis showed the result is in good agreement with Raman spectroscopy study. The cyclic voltammetry (CV) of Gr-ZnO nanocomposite revealed that the effect of electron-hole recombination process was increased and the presence of Gr in ZnO photoanode provides the fastest redox reaction and hence offers the fastest electron transfer in photoanode.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 307)

Pages:

185-191

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Liu and H. C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, J. Am. Chem. Soc. 125 (2013) 4430-4431.

DOI: 10.1021/ja0299452

Google Scholar

[2] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, and A. Schulte, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method, Phys. B: Condens. Matter 403 (2008) 3713–3717.

DOI: 10.1016/j.physb.2008.06.020

Google Scholar

[3] M. Giannouli and F. Spiliopoulou, Effects of the morphology of nanostructured ZnO films on the efficiency of dye-sensitized solar cells, Renew. Energy 41 (2012) 115–122.

DOI: 10.1016/j.renene.2011.10.010

Google Scholar

[4] Y. Bu, Z. Chen, W. Li, and B. Hou, Highly efficient photocatalytic performance of graphene-ZnO quasi-shell-core composite material, ACS Appl. Mater. Interfaces 23 (2013) 12361–12368.

DOI: 10.1021/am403149g

Google Scholar

[5] P. M. Aneesh, K. A. Vanaja, and M. K. Jayaraj, Synthesis of ZnO nanoparticles by hydrothermal method, Nanophotonic materials IV 6639 (2007) 66390J.

DOI: 10.1117/12.730364

Google Scholar

[6] J. Chung, J. Lee, and S. Lim, Annealing effects of ZnO nanorods on dye-sensitized solar cell efficiency, Phys. B: Condens. Matter 405 (2010) 2593–2598.

DOI: 10.1016/j.physb.2010.03.041

Google Scholar

[7] Y. Wang, Y. Sun, and K. Li, Dye-sensitized solar cells based on oriented ZnO nanowire-covered TiO2 nanoparticle composite film electrodes, Mater. Lett. 63 (2009) 1102–1104.

DOI: 10.1016/j.matlet.2009.02.044

Google Scholar

[8] F. Xu, M. Dai, Y. Lu, and L. Sun, Hierarchical ZnO Nanowire - Nanoflower Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells, J. Phys. Chem. C 114 (2010) 2776–2782.

DOI: 10.1021/jp910363w

Google Scholar

[9] Y. Xi, W. Z. Wu, H. Fang, and C. G. Hu, Integrated ZnO nanotube arrays as efficient dye-sensitized solar cells, J. Alloys Compd. 529 (2012) 163–168.

DOI: 10.1016/j.jallcom.2012.02.183

Google Scholar

[10] A. K. Geim and K. S. Novoselov, The rise of graphene., Nat. Mater. 6 (2007) 183–191.

Google Scholar

[11] A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109–162.

DOI: 10.1103/revmodphys.81.109

Google Scholar

[12] J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, and I. A. Aksay, Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells, ACS Nano 4 (2010) 6203–6211.

DOI: 10.1021/nn1016428

Google Scholar

[13] D. W. Zhang, X. D. Li, H. B. Li, S. Chen, Z. Sun, X. J. Yin, and S. M. Huang, Graphene-based counter electrode for dye-sensitized solar cells, Carbon 49 (2011) 5382–5388.

DOI: 10.1016/j.carbon.2011.08.005

Google Scholar

[14] J. Halme, Dye-sensitized nanostructured and organic photovoltaic cells: Technical review and preliminary tests - Master thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology Supervisor: Professor Peter Lun," Helsinki University of Technology (2002).

Google Scholar

[15] J. Gong, J. Liang, and K. Sumathy, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials, Renew. Sustain. Energy Rev. 16 (2012) 5848–5860.

DOI: 10.1016/j.rser.2012.04.044

Google Scholar

[16] A. Jena, S. P. Mohanty, P. Kumar, J. Naduvath, V. Gondane, P. Lekha, J. Das, H. K. Narula, S. Mallick, and P. Bhargava, Dye Sensitized Solar Cells: A Review, Trans. Indian Ceram. Soc. 71 (2012) 1–16.

DOI: 10.1080/0371750x.2012.689503

Google Scholar

[17] M. R. Narayan, Review: Dye sensitized solar cells based on natural photosensitizers, Renew. Sustain. Energy Rev. 16 (2011) 208–215.

Google Scholar

[18] S. Ameen, M. S. Akhtar, M. Song, and H. S. Shin, Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion, ACS Appl. Mater. Interfaces 4 (2012) 4405–12.

DOI: 10.1021/am301064j

Google Scholar

[19] D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee, and W. K. Choi, Emissive ZnO–graphene quantum dots for white-light-emitting diodes, Nat. Nanotechnol. 7 (2012) 465–471.

DOI: 10.1038/nnano.2012.71

Google Scholar

[20] Z. Zhang, L. Ren, W. Han, L. Meng, X. Wei, X. Qi, and J. Zhong, One-pot electrodeposition synthesis of ZnO/graphene composite and its use as binder-free electrode for supercapacitor, Ceram. Int. 41 (2014) 4374–4380.

DOI: 10.1016/j.ceramint.2014.11.127

Google Scholar

[21] T. Lu, Y. Zhang, H. Li, L. Pan, Y. Li, and Z. Sun, Electrochemical behaviors of graphene– ZnO and graphene–SnO2 composite films for supercapacitors, Electrochim. Acta 55 (2010) 4170–4173.

DOI: 10.1016/j.electacta.2010.02.095

Google Scholar

[22] H. W. Wang, Z. A. Hu, Y. Q. Chang, Y. L. Chen, Z. Y. Zhang, Y. Y. Yang, and H. Y. Wu, Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix, Mater. Chem. Phys. 130 (2011) 672–679.

DOI: 10.1016/j.matchemphys.2011.07.043

Google Scholar

[23] S. Park, J. W. Suk, J. An, J. Oh, S. Lee, W. Lee, J. R. Potts, J. H. Byun, and R. S. Ruoff, The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers, Carbon 50 (2012) 4573– 4578.

DOI: 10.1016/j.carbon.2012.05.042

Google Scholar

[24] F. Xu, J. Chen, X. Wu, Y. Zhang, Y. Wang, J. Sun, H. Bi, W. Lei, Y. Ni, and L. Sun, Graphene Scaffolds Enhanced Photogenerated Electron Transport in ZnO Photoanodes for High-Efficiency Dye-Sensitized Solar Cells, J. Phys. Chem. C 117 (2013) 8619– 8627.

DOI: 10.1021/jp312379b

Google Scholar

[25] L. W. Hu, H. Tian, Y. X. Zhang, K. Lu, and A. H. Jing, ZnO/Graphene Composites: Synthesis, Characterization and Optical Properties, Key Eng. Mater. 609–610 (2014) 76–81.

DOI: 10.4028/www.scientific.net/kem.609-610.76

Google Scholar