The Effect of Various ZnO Layer towards Sensing Performance as an Electrolyte-Insulator-Semiconductor pH Sensor

Article Preview

Abstract:

Multilayers zinc oxide thin films were synthesized by the sol–gel spin coating process to fabricate sensing membranes in an electrolyte-insulator-semiconductor (EIS) sensor for pH detection. The effect of various layers (single, three and five layers) on the crystallinity, morphological and optical properties of ZnO films were investigated by XRD, FE-SEM, and Photoluminescence respectively. The ZnO thin films grown were polycrystalline with hexagonal wurtzite structure. The films were not smooth, with grains and porosity in between them, and become denser as film thickness increased. The PL spectra exhibit two main emission peaks at near band edge 360-380 nm region (strong and sharp UV radiation) and 450–600 nm region (broad blue, green, and yellow radiation). Sensitivity, linearity was measured to determine the sensing and reliability performance of fabricated devices. The result confirmed that, the sensitivity for the three samples increased with increased layer from 48.3 mV/pH to 82.58 mV/pH. Compared to single and three layers of the ZnO electrolyte-insulator-semiconductor (EIS), ZnO grown with five layers exhibits a higher sensitivity of 82.58 mV/pH in solutions from pH 2–12 and linearity of 99.015 %. This is due to the increased of ZnO thickness, which produces dense surface and a well-crystallized grain structure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 307)

Pages:

37-44

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Martinoia, G. Massobrio, L. Lorenzelli, Modeling ISFET microsensor and ISFET-based microsystems: A review, Sensors Actuators, B Chem. 105 (2005) 14–27.

DOI: 10.1016/s0925-4005(04)00107-8

Google Scholar

[2] R.R. César, A.D. Barros, I. Doi, J.A. Diniz, J.W. Swart, Electrolyte-Insulator-Semiconductor field effect device for pH detecting, 2014 29th Symp. Microelectron. Technol. Devices Chip Aracaju, SBMicro 2014. (2014) 0–3.

DOI: 10.1109/sbmicro.2014.6940127

Google Scholar

[3] Y.G. Vlasov, Y.A. Tarantov, P. V. Bobrov, Analytical characteristics and sensitivity mechanisms of electrolyte-insulator-semiconductor system-based chemical sensors-a critical review, Anal. Bioanal. Chem. 376 (2003) 788–796.

DOI: 10.1007/s00216-003-1957-3

Google Scholar

[4] T.-M. Pan, C.-W. Lin, High-κ Dy2TiO5 Electrolyte-Insulator-Semiconductor Urea Biosensors, J. Electrochem. Soc. 158 (2011) J100.

DOI: 10.1149/1.3547723

Google Scholar

[5] F. Sensors, E.I.S. Structures, Playing around with Field Effect Sensors on the Basis of EIS Structures, LAPS and ISFETs,Sensors.pdf, (2005) 126–138.

DOI: 10.3390/s5030126

Google Scholar

[6] R. Chand, D. Han, S. Neethirajan, Y.S. Kim, Detection of protein kinase using an aptamer on a microchip integrated electrolyte-insulator-semiconductor sensor, Sensors Actuators, B Chem. 248 (2017) 973–979.

DOI: 10.1016/j.snb.2017.02.140

Google Scholar

[7] A.P. Selvi Isabel, C.H. Kao, R.K. Mahanty, Y.C.S. Wu, C.Y. Li, C.Y. Lin, C.F. Lin, Sensing and structural properties of Ti-doped tin oxide (SnO2) membrane for bio-sensor applications, Ceram. Int. 43 (2017) 10386–10391.

DOI: 10.1016/j.ceramint.2017.05.073

Google Scholar

[8] M.L. Lee, J.C. Wang, C.H. Kao, H. Chen, C.Y. Lin, C.W. Chang, R.K. Mahanty, C.F. Lin, K.M. Chang, Comparison of ZnO and Ti-doped ZnO sensing membrane applied in electrolyte-insulator-semiconductor structure, Ceram. Int. 44 (2018) 6081–6088.

DOI: 10.1016/j.ceramint.2017.12.239

Google Scholar

[9] A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176 (2011) 1409–1421.

DOI: 10.1016/j.mseb.2011.09.005

Google Scholar

[10] Z. Zang, A. Nakamura, J. Temmyo, Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature, Mater. Lett. 92 (2013) 188–191.

DOI: 10.1016/j.matlet.2012.10.083

Google Scholar

[11] Z. Zang, X. Zeng, J. Du, M. Wang, X. Tang, Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes, Opt. Lett. 41 (2016) 3463.

DOI: 10.1364/ol.41.003463

Google Scholar

[12] J. Wang, J. Yang, N. Han, X. Zhou, S. Gong, J. Yang, P. Hu, Y. Chen, Highly sensitive and selective ethanol and acetone gas sensors based on modified ZnO nanomaterials, Mater. Des. 121 (2017) 69–76.

DOI: 10.1016/j.matdes.2017.02.048

Google Scholar

[13] C.L. Hsu, J.H. Lin, D.X. Hsu, S.H. Wang, S.Y. Lin, T.J. Hsueh, Enhanced non-enzymatic glucose biosensor of ZnO nanowires via decorated Pt nanoparticles and illuminated with UV/green light emitting diodes, Sensors Actuators, B Chem. 238 (2017) 150–159.

DOI: 10.1016/j.snb.2016.07.060

Google Scholar

[14] J. Luo, A. Quan, C. Fu, H. Li, Shear-horizontal surface acoustic wave characteristics of a (110) ZnO/SiO2/Si multilayer structure, J. Alloys Compd. 693 (2017) 558–564.

DOI: 10.1016/j.jallcom.2016.09.118

Google Scholar

[15] G.H. He, H. Zhou, H. Shen, Y.J. Lu, H.Q. Wang, J.C. Zheng, B.H. Li, C.X. Shan, D.Z. Shen, Photodetectors for weak-signal detection fabricated from ZnO:(Li,N) films, Appl. Surf. Sci. 412 (2017) 554–558.

DOI: 10.1016/j.apsusc.2017.03.295

Google Scholar

[16] R. Menner, S. Paetel, W. Wischmann, M. Powalla, Indium zinc oxide window layer for high-efficiency Cu(In,Ga)Se2solar cells, Thin Solid Films. 634 (2017) 160–164.

DOI: 10.1016/j.tsf.2017.02.018

Google Scholar

[17] R.G. Nikov, A.O. Dikovska, N.N. Nedyalkov, P.A. Atanasov, G. Atanasova, D. Hirsch, B. Rauschenbach, ZnO nanostructures produced by pulsed laser deposition in open air, Appl. Phys. A. 123 (2017) 657.

DOI: 10.1007/s00339-017-1276-8

Google Scholar

[18] D. Acosta, A. López-Suárez, C. Magaña, F. Hernández, Structural, electrical and optical properties of ZnO thin films produced by chemical spray using ethanol in different amounts of the sprayed solution, Thin Solid Films. 653 (2018) 309–316.

DOI: 10.1016/j.tsf.2018.03.031

Google Scholar

[19] M.I. Khan, K.A. Bhatti, R. Qindeel, N. Alonizan, H.S. Althobaiti, Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique, Results Phys. 7 (2017) 651–655.

DOI: 10.1016/j.rinp.2016.12.029

Google Scholar

[20] J. Lv, K. Huang, X. Chen, J. Zhu, L. Wang, X. Song, Z. Sun, Effect of preheating temperatures on microstructure and optical properties of Na-doped ZnO thin films by solgel process, Superlattices Microstruct. 49 (2011) 477–486.

DOI: 10.1016/j.spmi.2011.01.005

Google Scholar

[21] T.-M. Pan, C.-W. Wang, Y.-S. Huang, W.-H. Weng, S.-T. Pang, Effect of Postdeposition Annealing on the Structural and Sensing Characteristics of Tb2O3 and Tb2Ti2O7 Sensing Films for Electrolyte-Insulator-Semiconductor pH Sensors, J. Electrochem. Soc. 162 (2015) B83–B88.

DOI: 10.1149/2.0641504jes

Google Scholar

[22] A.S. Gadallah, M.M. El-Nahass, Structural, optical constants and photoluminescence of ZnO thin films grown by sol-gel spin coating, Adv. Condens. Matter Phys. 2013 (2013).

DOI: 10.1155/2013/234546

Google Scholar

[23] C. Haur Kao, H. Chen, M. Ling Lee, C. Chun Liu, H.Y. Ueng, Y. Cheng Chu, Y. Jie Chen, K. Ming Chang, Multianalyte biosensor based on pH-sensitive ZnO electrolyte-insulator- semiconductor structures, J. Appl. Phys. 115 (2014).

DOI: 10.1063/1.4874182

Google Scholar

[24] L. Xu, G. Zheng, J. Miao, F. Xian, Dependence of structural and optical properties of sol-gel derived ZnO thin films on sol concentration, Appl. Surf. Sci. 258 (2012) 7760–7765.

DOI: 10.1016/j.apsusc.2012.04.137

Google Scholar

[25] S. O'Brien, L.H.K. Koh, G.M. Crean, ZnO thin films prepared by a single step sol-gel process, Thin Solid Films. 516 (2008) 1391–1395.

DOI: 10.1016/j.tsf.2007.03.160

Google Scholar

[26] M. Soylu, F. Yakuphanoglu, Fabrication and characterization of light-sensing device based on transparent ZnO thin film prepared by sol-gel, Optik (Stuttg). 127 (2016) 8479–8486.

DOI: 10.1016/j.ijleo.2016.06.020

Google Scholar

[27] L. Xu, X. Li, Y. Chen, F. Xu, Structural and optical properties of ZnO thin films prepared by sol-gel method with different thickness, Appl. Surf. Sci. 257 (2011) 4031–4037.

DOI: 10.1016/j.apsusc.2010.11.170

Google Scholar

[28] I. Semiconductor, E.I.S. Sensor, S. Technique, P. Garu, S.P. Bag, B. Lou, J. Her, T. Pan, Sensing and Reliability Properties of LaTiO y high-k Oxide based Electrolyte - Insulator – Semiconductor ( EIS ) Sensor using Sol- Gel Technique, (2017).

DOI: 10.1016/j.mssp.2019.104741

Google Scholar