[1]
V. Syzrantsev, E. Paukshtis, T. Larina, Y. Chesalov, S. Bardakhanov A. Nomoev, Features of Surface Structures of Alumina and Titanium Dioxide Nanoparticles Produced Using Different Synthesis Methods, Journal of Nanomaterials, 2018 (2018) 2065687.
DOI: 10.1155/2018/2065687
Google Scholar
[2]
A.P. Zavjalov, K.V. Zobov, I.K. Chakin, V.V. Syzrantsev, S.P. Bardakhanov, Synthesis of copper nanopowders using electron-dtam evaporation at atmospheric pressure of inert gas, Nanotechnologies in Rassia, 9(2014) 660-666.
DOI: 10.1134/s1995078014060196
Google Scholar
[3]
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520–7535.
DOI: 10.1039/c3cs60378d
Google Scholar
[4]
L. Huang, F. Peng, H. Yu, H. Wang, Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Sci. 11 (2009) 129–138.
DOI: 10.1016/j.solidstatesciences.2008.04.013
Google Scholar
[5]
S. Bardakhanov, A. Nomoev, M. Schreiber, A. Radnaev, R. Salimov, K. Zobov, A. Zavjalov and E. Khartaeva, Channel Structures Formed in Copper Ingots upon Melting and Evaporation by a High-Power Election Beam, Metals 5 (2015) 428-438.
DOI: 10.3390/met5010428
Google Scholar
[6]
H. Abbasi, D. Doranian, Effect of laser fluence on the characteristics of Al nanoparticles produced by laser ablation in deionized water, Optics and Spectrosopy, 118(3) (2015) 472-481.
DOI: 10.1134/s0030400x15030029
Google Scholar
[7]
H. Dizajghorbani Aghdama et al., Ablation time and laser fluence impacts on the composition, morphology and optical properties of copper oxide nanoparticles, Optical Materials, 91 (2019) 433–438.
DOI: 10.1016/j.optmat.2019.03.027
Google Scholar
[8]
F. Tepper, G. Ivanov, M. Lerner, Davidovich, Energetic formulations from nanosize metal powders // Proceedings of the International Pyrotechnics Seminar, 24th. - N. Y., 1998. - Р. 519 – 530.
Google Scholar
[9]
L. S. Vikulina et al., Determining the Degree of Nanopowders Hydrophilicity by the Ratio Fractal Dimension to the Specific Surface, Advanced Materials Research, 1085 (2015) 44-49.
DOI: 10.4028/www.scientific.net/amr.1085.44
Google Scholar
[10]
A.V. Nomoev, E. Ch. Khartaeva, N.V. Yumozhapova, T.G. Darmaev, S.P. Bardakhanov, V.V. Syzranthev, K.V. Zobov and Y .Y. Gafner, Receiving Copper Nanoparticles: Experiment and Modelling, Solid State Phenomena, 288, (2018) 140-147.
DOI: 10.4028/www.scientific.net/ssp.288.140
Google Scholar
[11]
S.P. Bardakhanov, A.I. Korchagin, N.K. Kuksanov, A.V. Lavruhin, R.A. Salimov, S.N. Fadeev and V.V. Cherepkov: producing nanopowders by evaporation the raw materials at the electron accelerator at atmospheric pressure, Reports of the Russian Academy of Sciences (in Rusian). 409 (3) (2006) 320-323.
DOI: 10.1007/s11182-007-0016-5
Google Scholar
[12]
B.G. Trusov, Computer simulation of phase and chemical equilibria, Electronic scientific and technical journal Ingenernyi Vestnik [Engineering Journal] 8, august (2012) (In Russian).
Google Scholar