The Research for Approaches to Increase Power of the Compact THz Emitters Based on Low-Temperature Gallium Arsenide Heterostructures

Article Preview

Abstract:

The design and technological conditions for the manufacture of photoconductive antennas based on low-temperature gallium arsenide (LT-GaAs) have been developed. The optimized photoconductive THz antenna is made based on LT-GaAs with the flag geometry of the contacts and with the interdigitated structure including metal closing through the dielectric of each second period. LT-GaAs samples were obtained by molecular beam epitaxy at temperatures of 210 °C, 230 °C, 240 °C on GaAs substrates (100). Dark and photocurrent were measured depending on the bias voltage of the LT-GaAs heterostructure at the EP6 probe station. Full wave finite element method solver has been used to investigate the proposed plasmon PCA electrical and optical behavior by combining the Maxwell's wave equation with the drift-diffusion/Poisson equations.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 310)

Pages:

101-108

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Siegel, IEEE Trans. Microw. Theory Tech., 52(10), 2438– 2447 (2004).

Google Scholar

[2] C.A. Schmuttenmaer, Chem. Rev. 104(4), 1759–1779 (2004).

Google Scholar

[3] S.S. Dhillon, M.S. Vitiello, E. H. Linfield et al., J. Phys. D Appl. Phys. 50(4), 043001 (2017).

Google Scholar

[4] D.V. Lavrukhin, R.R. Galiev, A.Yu. Pavlov, A. E. Yachmenev, M.V. Maytama, I.A. Glinskiy, R.A. Khabibullin, Yu.G. Goncharov, K I. Zaytsev, D.S. Ponomarev, Optics and Spectroscopy. 126. 580-586 (2019).

DOI: 10.1134/s0030400x19050199

Google Scholar

[5] A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, Nano Lett. 15 (12), 8306–8310 (2015).

DOI: 10.1021/acs.nanolett.5b03922

Google Scholar

[6] S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, ACS Nano 6(3), 2026–2031 (2012).

Google Scholar

[7] S. Winnerl, J. Infrared Millim. THz Waves 33, 431–454 (2012).

Google Scholar

[8] M. Jarrahi, IEEE Trans. Terahertz Sci. Technol. 5(3), 391–397 (2015).

Google Scholar

[9] N. M. Burford and M. O. El-Shenawee, Opt. Eng. 56(1), 010901 (2017).

Google Scholar

[10] M. Bashirpour, M. Ghorbani, M. Kolahdouz, M. Neshat, M. Masnadi-Shirazi and H. Aghababa, RSC Adv. 7, 53010–53017 (2017).

DOI: 10.1039/c7ra11398f

Google Scholar

[11] D. H. Auston, K. P. Cheung, J. A. Vladmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).

Google Scholar

[12] S. A. Nomoev, I. S. Vasil'evskii, A. N. Vinichenko, K. I. Kozlovskii, A. A. Chistyakov, E. D. Mishina, D. I. Khusyainov, A. M. Buryakov, Technical Physics Letters, 44(1), 44-46 (2018).

DOI: 10.1134/s1063785018010169

Google Scholar

[13] S. A. Nomoev, I. S. Vasil'evskii, E.C. Khartaeva, Solid State Phenomena, 271, 92-97 (2018).

Google Scholar

[14] A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett. 86(12), 121114 (2005).

DOI: 10.1063/1.1891304

Google Scholar

[15] G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, Appl. Phys. Lett. 93(9), 091110 (2008).

DOI: 10.1063/1.2976162

Google Scholar

[16] B. Gelmont, R. Parthasarathy, T. Globus, Semiconductors 42, 924–930 (2008).

Google Scholar