Semiconductor Nanostructures for Modern Electronics

Article Preview

Abstract:

Modern electronics is based on semiconductor nanostructures in practically all main parts: from microprocessor circuits and memory elements to high frequency and light-emitting devices, sensors and photovoltaic cells. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) with ultimately low gate length in the order of tens of nanometers and less is nowadays one of the basic elements of microprocessors and modern electron memory chips. Principally new physical peculiarities of semiconductor nanostructures are related to quantum effects like tunneling of charge carriers, controlled changing of energy band structure, quantization of energy spectrum of a charge carrier and a pronounced spin-related phenomena. Superposition of quantum states and formation of entangled states of photons offers new opportunities for the realization of quantum bits, development of nanoscale systems for quantum cryptography and quantum computing. Advanced growth techniques such as molecular beam epitaxy and chemical vapour epitaxy, atomic layer deposition as well as optical, electron and probe nanolithography for nanostructure fabrication have been widely used. Nanostructure characterization is performed using nanometer resolution tools including high-resolution, reflection and scanning electron microscopy as well as scanning tunneling and atomic force microscopy. Quantum properties of semiconductor nanostructures have been evaluated from precise electrical and optical measurements. Modern concepts of various semiconductor devices in electronics and photonics including single-photon emitters, memory elements, photodetectors and highly sensitive biosensors are developed very intensively. The perspectives of nanostructured materials for the creation of a new generation of universal memory and neuromorphic computing elements are under lively discussion. This paper is devoted to a brief description of current achievements in the investigation and modeling of single-electron and single-photon phenomena in semiconductor nanostructures, as well as in the fabrication of a new generation of elements for micro-, nano, optoelectronics and quantum devices.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 310)

Pages:

65-80

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.E. Lilienfeld, Method and on apparatus for controlling electric currents, US patent 1,745,175A. (1926).

Google Scholar

[2] R. Landauer, Irreversibility and Heat Generation in the Computing Process, IBM J. Res. Dev. 5(3) (1961) 183-191.

DOI: 10.1147/rd.53.0183

Google Scholar

[3] N.A. Shelepin, Peculiarities of an elemental base of VLSI based on CMOS SOI with full depletion, Electronic Components 1 (2019) 31-33 (in Russian).

Google Scholar

[4] E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy, M.A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature 455 (2007) 519-522.

DOI: 10.1038/nature05498

Google Scholar

[5] O.V. Naumova, B.I. Fomin, D.A. Nasimov, N.V. Dudchenko, S.F. Devyatova, E.D. Zhanaev, V.P. Popov, A.V. Latyshev, A.L. Aseev, Yu.D. Ivanov, A.I. Archakov, SOI nanowires as sensors for charge detection, Semicond. Sci. Tech. 25(6) (2010) 055004.

DOI: 10.1088/0268-1242/25/5/055004

Google Scholar

[6] Yu.D. Ivanov, T.O. Pleshakova, A.F. Kozlov, K.A. Malsagova, N.V. Krokhin, A.L. Kaishev, I.D. Shumov, V.P. Popov, O.V. Naumova, B.I. Fomin, D.A. Nasimov, A.L. Aseev, A.I. Archakov, SOI-nanowire transistor for detection of D-NFATc1 molecules, Avtometriya 49(5) (2013) 119-126 (in Russian).

DOI: 10.3103/s8756699013050142

Google Scholar

[7] V.P. Popov, M.A. Ilnitkii, E.D. Zhanaev, A.V. Myakon'kich, K.V. Rudenko, A.V. Glukhov, Biosensor properties of SOI nanowire transistors with a PEALD Al2O3 dielectric protective layer, Semiconductors 50(5) (2016) 632-638.

DOI: 10.1134/s1063782616050195

Google Scholar

[8] A. Lichtenstein. E. Havivi, R. Shaham, E. Hahamy, R. Leibovich, A. Pevzner, V. Krivitsky, G. Davivi, R. Elnathan, Y. Engel, E. Flaxer, F. Patolsky, Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays, Nature Commun. 5 (2014) 4195.

DOI: 10.1038/ncomms5195

Google Scholar

[9] A.Cao, W.Zhu, J.Chang, J.H. Klootwijk, E.J.R. Sudholter, J.Huskens, L.C.P.M. de Smet, Metal–Organic Polyhedra-Coated Si Nanowires for the Sensitive Detection of Trace Explosives, Nano Lett. 17(1) (2017) 1-7.

DOI: 10.1021/acs.nanolett.6b02360

Google Scholar

[10] V.A. Gritsenko, K.A. Nasyrov, Yu.N. Novikov, A.L. Aseev, S.Y. Yoon, J.-W. Lee, H.H. Lee, C.W. Kim, A new low voltage fast SONOS memory with high-k dielectric, Solid State Electron. 47(10) (2003) 1651-1656.

DOI: 10.1016/s0038-1101(03)00174-6

Google Scholar

[11] V.A. Gritsenko, D.R. Islamov, Physics of dielectric films, first ed., Rzhanov Institute of Semiconductor Physics, Novosibirsk, 2017, 351 P. (in Russian).

Google Scholar

[12] L. Chua, Memristor-The missing circuit element, IEEE T. Circuits Syst. 18(5) (1971) 507-519.

DOI: 10.1109/tct.1971.1083337

Google Scholar

[13] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found, Nature 453 (2008) 80-83.

DOI: 10.1038/nature06932

Google Scholar

[14] K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano, H. Hosono, Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor, Nature 419 (2002) 462-465.

DOI: 10.1038/nature01053

Google Scholar

[15] А.М. Volodin, V.I. Zaikoskii, R.M. Kenzhin, A.F. Bedilo, I.V. Mishakov. A.V. Vedyagin, Synthesis of nanocrystalline calcium aluminate C12A7 under carbon nanoreactor conditions, Mater. Lett. 189 (2017) 210-212.

DOI: 10.1016/j.matlet.2016.11.112

Google Scholar

[16] J.S. Oh, C.-J. Kang, Y.J. Kim, S. Sinn, M. Han, Y.J. Chang, B.-G. Park, S.W. Kim, H.-D. Kim, T.W. Noh, Evidence for Anionic Excess Electrons in a Quasi-Two-Dimensional Ca2N Electride by Angle-Resolved Photoemission Spectroscopy, J. Am. Chem. Soc. 138(8) (2011) 2496-2499.

DOI: 10.1021/jacs.5b12668

Google Scholar

[17] Zh.I. Alferov, Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology, Phys-Usp. 172(9) (2002) 1068-1086 (in Russian).

Google Scholar

[18] D.Yu. Protasov, D.V. Gulyaev, A.K. Bakarov, A.I. Toropov, K.S. Zhuravlev, The 2DEG mobility enhancement for low- and high-electric fields in a new type of AlGaAs/InGaAs heterostructures with donor-acceptor doping, J. Phys. Conf. Ser. 864 (2017) 012051.

DOI: 10.1088/1742-6596/864/1/012051

Google Scholar

[19] V.A. Haisler, I.A. Derebesov, A.I. Toropov, I.I. Ryabzev, Emitters based on semiconductor Bragg microresonators, Avtometriya 47(5) (2011) 25-31 (in Russian).

Google Scholar

[20] A.V. Gaisler, A.S. Yaroshevich, I.A. Derebezov, A.K. Kalagin, A.K. Bakarov, A.I. Toropov, D.V. Shcheglov, V.A. Gaisler, A.V. Latyshev, A.L. Aseev, Fine structure of the exciton states in InAs quantum dots, JETP Lett. 97(5) (2013) 274-278.

DOI: 10.1134/s0021364013050056

Google Scholar

[21] M. Scholz, S. Buttner, O. Benson, A.I. Toropov, A.K. Bakarov, A.K. Kalagin, A. Lochmann, E. Stock, O. Scultz, F. Hopfer, V.A. Haisler, D. Bimberg, Non-classical light emission from a single electrically driven quantum dot, Opt. Express 15(15) (2007) 9107.

DOI: 10.1364/oe.15.009107

Google Scholar

[22] A.V. Dvurechenskii, A.I. Yakimov, 1.4 - Silicon-Based Nanoheterostructures With Quantum Dots, in: A.V. Latyshev, A.V. Dvurechenskii, A.L. Aseev (Eds.), Advances in Semiconductor Nanostructures. Growth, Characterization, Properties and Application, Elsevier, Amsterdam, 2017. pp.59-99.

DOI: 10.1016/b978-0-12-810512-2.00004-4

Google Scholar

[23] A.I. Yakimov, V.V. Kirienko, A.A. Bloshkin, V.A. Armbrister, A.V. Dvurechenskii, Plasmon polariton enhanced mid-infrared photodetectors based on Ge quantum dots in Si, J. Appl. Phys. 122(13) (2017) 133101.

DOI: 10.1063/1.4986986

Google Scholar

[24] A.I. Yakimov, V.V. Kirienko, A.A. Bloshkin, V.A. Armbrister, A.V. Dvurechenskii, J.-M. Hartmann, Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons, Opt. Express 25(21) (2017) 25602-25611.

DOI: 10.1364/oe.25.025602

Google Scholar

[25] A.F. Zinovieva, A.V. Dvurechenskii, V.V. Kirienko, A.I. Nikiforov, A.S. Lyubin, L.V. Kulik, Direct measurements of spin relaxation times of electrons in tunnel-coupled Ge/Si quantum dot arrays, Phys. Rev. B 81 (2010) 113303.

DOI: 10.1103/physrevb.81.113303

Google Scholar

[26] Yu.G. Sidorov, A.P. Anciferov, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, I.V. Sabinins, V.G. Remesnik, D.G. Ikusov, I.N. Uzhakov, G.Yu. Sidorov, V.D. Kuzmin, S.V. Rihlicky, V.A. Shvets, A.S. Mardezhov, E.V. Spesivcev, A.K. Gutakovskii, A.V. Latyshev, 2.12 - Molecular Beam Epitaxy of CdxHg1−xTe, in: A.V. Latyshev, A.V. Dvurechenskii, A.L. Aseev (Eds.), Advances in Semiconductor Nanostructures. Growth, Characterization, Properties and Application, Elsevier, Amsterdam, 2017. pp.297-323.

DOI: 10.1016/b978-0-12-810512-2.00012-3

Google Scholar

[27] E.B. Olshanetsky, S. Sassine, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, J.C. Portal, A.L. Aseev, Quantum Hall liquid-insulator and plateau-to-plateau transitions in a high mobility 2D electron gas in an HgTe quantum well, JETP Lett. 84(10) (2006) 565-569.

DOI: 10.1134/s0021364006220085

Google Scholar

[28] Z.D. Kvon, E.B. Olshanetsky, D.A. Kozlov, N.N. Mikhailov, S.A. Dvoretsky, 1.2 - Two-Dimensional Semimetal in HgTe-Based Quantum Wells, in: A.V. Latyshev, A.V. Dvurechenskii, A.L. Aseev (Eds.), Advances in Semiconductor Nanostructures. Growth, Characterization, Properties and Application, Elsevier, Amsterdam, 2017. pp.29-48.

DOI: 10.1016/b978-0-12-810512-2.00002-0

Google Scholar

[29] G.M. Gusev, Z.D. Kvon, O.A. Shegai, N.N. Mikhailov, S.A. Dvoretsky, J.C. Portal, Transport in disordered two-dimensional topological insulators, Phys. Rev. B 84 (2011) 121302.

DOI: 10.1103/physrevb.84.121302

Google Scholar