[1]
G.J. Xu, Z.H. Liu, C.J. Zhang, G.L. Cui, L.Q. Chen, Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures, J. Mater. Chem. A. 3 (2015) 4092-4123.
DOI: 10.1039/c4ta06264g
Google Scholar
[2]
Z. Zhu, D. Zhang, H. Yan, W. Li, Qilu, Precise preparation of high performance spherical hierarchical LiNi0.5Mn1.5O4 for 5 V lithium ion secondary batteries, J. Mater. Chem. A. 1 (2013) 5492-5496.
DOI: 10.1039/c3ta10980a
Google Scholar
[3]
P.W. Nicholas, Z. Pieczonka, Y. Liu, P. Lu, K.L. Olson, M. John, B.R. Powell, J.H. Kim, Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries, J. Phys. Chem. 117 (2013) 15947−15957.
DOI: 10.1021/jp405158m
Google Scholar
[4]
Y. Wang, Q. Peng, G. Yang, Z. Yang, L.C. Zhang, H. Long, Y.H. Huang, P.X. Lu, High-stability 5V spinel LiNi0.5Mn1.5O4 sputtered thin film electrodes by modifying with aluminium oxide, Electrochim. Acta. 136 (2014) 450–456.
DOI: 10.1016/j.electacta.2014.04.184
Google Scholar
[5]
U. Nisar, R. Amin, R. Essehli, R.A. Shakoor, R. Kahraman,D. K. Kim, A.M. Khaleel, I. Belharouak, Extreme fast charging characteristics of zirconia modified LiNi0.5Mn1.5O4cathode for lithium ion batteries, J. Power Sources. 396 (2018) 774–781.
DOI: 10.1016/j.jpowsour.2018.06.065
Google Scholar
[6]
H. D. Sun, B.B. Xia, W.W. Liu, G.Q, Fang, J.J. Wu, et al, Significant improvement in performances of LiNi0.5Mn1.5O4 through surface modification with high ordered Al-doped ZnO electro-conductive layer, Appl. Surf. Sci. 331 (2015) 309-314.
DOI: 10.1016/j.apsusc.2015.01.120
Google Scholar
[7]
Q. Pang, Q. Fu, Y. H. Wang, Y. Q. Zhang, B. Zou, et al, Improved Electrochemical Properties of Spinel LiNi0.5Mn1.5O4 Cathode Materials by Surface Modification with RuO2 Nano particles, Electrochim. Acta. 152 (2015) 240-248.
DOI: 10.1016/j.electacta.2014.11.142
Google Scholar
[8]
S.D. Dong, Y. Zhou, C.X. Hai, J. B. Zeng, Y.X. Sun, Y. Shen, X. Li, X.F. Ren, G.C. Qi, X.X. Zhang, L.X. Ma, Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials, Ceram. Int.45 (2019) 144-152.
DOI: 10.1016/j.ceramint.2018.09.145
Google Scholar
[9]
W.K. Shin, Y.S. Lee and D.W. Kim, Study on the cycling performance of LiNi0.5Mn1.5O4 electrodes modified by reactive SiO2 nano particles, J. Mater. Chem. A. 2 (2014) 6863-6869.
Google Scholar
[10]
Q.Q. Chen, Y.B. Wang, T.T. Zhang, W.M. Yin, J.W. Yang, X.Y. Wang, Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries, Electrochim. Acta. 83 (2012) 65-72.
DOI: 10.1016/j.electacta.2012.08.025
Google Scholar
[11]
Y.M. Chung, Y.H. Shin, Y.Z. Liu, J.S. Park, L.C. Margez, A.T. Greszler, Synergetic effect of carbon and AlF3 coatings on the lithium titanium oxide anode material for high power lithium-ion batteries, J. Electroanal. Chem. 837 (2019) 240-245.
DOI: 10.1016/j.jelechem.2019.02.037
Google Scholar
[12]
J. F. Zhang, T. Ren,J. G. Duan, X. Li, P. Dong, Y. J. Zhang, D. Wang, Enhanced High-Voltage Cycling Stability of Nickel-Rich Cathode Materials by Surface Modification Using LaFeO3 Ionic Conductor, Powder Mater. Energy Appl. 6(71) (2019) 1975-1980.
DOI: 10.1007/s11837-019-03446-3
Google Scholar
[13]
Y.Y. Zhu, Q. Ling, Y.F. Liu, H. Wang, Y.F. Zhu, Photocatalytic performance of BiPO4 nanorods adjusted via defects, Appl. Catal. B-Environ. 187 (2016) 204-211.
DOI: 10.1016/j.apcatb.2016.01.012
Google Scholar
[14]
Z.J. Peng, G.W. Yang, F.Q. Li, Z.H. Zhu, Z.Y. Liu, Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5 C by Li2SiO3 coating and Si4+ doping, J. Alloy. Compd. 762 (2018) 827-834.
DOI: 10.1016/j.jallcom.2018.05.226
Google Scholar
[15]
K. Zhang, P. Li, M. Ma, J.H. Park, Designed seamless outer surface: Application for high voltage LiNi0.5Mn1.5O4 cathode with excellent cycling stability, J. Power Sources 336 (2016) 307-315.
DOI: 10.1016/j.jpowsour.2016.10.074
Google Scholar
[16]
J. Zhu, Y.J. Li, L.L. Xue, Y.X. Chen, T.X. Lei, S.Y. Deng, G.L. Cao, Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating, J. Alloy. Compd. 773 (2019) 112-120.
DOI: 10.1016/j.jallcom.2018.09.237
Google Scholar
[17]
Y.N. Sun, H. Dong, Y.L. Xu, Y. Zhang, C.J. Zhao, D. Wang, Z. Liu, D. Liu, Incorporating cyclized-Polyacrylonitrile with Li4Ti5O12 Nanosheet for High Performance Lithium Ion Battery Anode Material, Electrochim. Acta. 246 (2017) 106–114.
DOI: 10.1016/j.electacta.2017.05.080
Google Scholar
[18]
Y.F. Deng, S.X. Zhao, D.H. Hu, C.W. Nan, Structure and electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 coated with Li-La-Zr-O solid electrolyte, J. Solid. State. Electro. chem. 18 (2014) 249-255.
DOI: 10.1007/s10008-013-2265-2
Google Scholar
[19]
S.S. Duan, H.Y. Jin, J.X. Yu, E.N. Esfahani, B. Yang, J.L. Liu, Y.Z. Ren, Y. Chen, L.H. Lu, X.C. Tian, S. Hou, J.Y. Li, Non-equilibrium microstructure of Li1.4Al0.4Ti1.6(PO4)3 super ionic conductor by spark plasma sintering for enhanced ionic conductivity, Nano. Energy. 51 (2018) 19-25.
DOI: 10.1016/j.nanoen.2018.06.050
Google Scholar
[20]
X.G. Liu, J. Tan, J. Fu, R.X. Yuan, H. Wen, and C.H. Zhang, Facile Synthesis of Nano sized Lithium-Ion-Conducting Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3 and Its Mechanical Nano composites with LiMn2O4 for Enhanced Cyclic Performance in Lithium Ion Batteries, ACS. Appl. Mater. Interfaces. 9 (2017) 11696-11703.
DOI: 10.1021/acsami.6b16233.s001
Google Scholar