Study on Modified High Voltage (5V) Spinel Lithium Manganate Used for Energy Storage Lithium Titanate Batteries

Article Preview

Abstract:

Solid electrolyte Li1.4Al0.4Ti1.6 (PO4)3 was used to coat high voltage (5V) spinel lithium manganate. The modified high voltage spinel lithium manganate was used as positive electrode and the lithium titanate as negative electrode. A type of 10Ah energy storage battery was assembled. Charge-discharge and cycle life tests of these batteries were carried out at different temperatures and rates. The results show that coating high voltage spinel lithium manganate improves the high temperature cycle performance of the lithium titanate batteries. The capacity retention ratio of the lithium titanate batteries with the coated high voltage lithium manganate as cathode material increases from 74.8% to 86.5% at 60°Cafter 2000 cycles compared to the lithium titanate batteries with the uncoated high voltage lithium manganite as cathode material. However, the cycle performance is not affected at-30 °C. The low temperature rate performance of lithium titanate batteries is improved by coating high voltage lithium manganate. When the discharge rate is 20 C at-30°C, 90.6% of the 1 C charge capacity at room temperature of the lithium titanate battery with the coated high voltage lithium manganate as cathode materialcan be delivered, while the lithium titanate battery with the un-coated high voltage lithium manganate as cathode material can only deliver 80.2% of the 1 C charge capacity at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 310)

Pages:

58-64

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.J. Xu, Z.H. Liu, C.J. Zhang, G.L. Cui, L.Q. Chen, Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures, J. Mater. Chem. A. 3 (2015) 4092-4123.

DOI: 10.1039/c4ta06264g

Google Scholar

[2] Z. Zhu, D. Zhang, H. Yan, W. Li, Qilu, Precise preparation of high performance spherical hierarchical LiNi0.5Mn1.5O4 for 5 V lithium ion secondary batteries, J. Mater. Chem. A. 1 (2013) 5492-5496.

DOI: 10.1039/c3ta10980a

Google Scholar

[3] P.W. Nicholas, Z. Pieczonka, Y. Liu, P. Lu, K.L. Olson, M. John, B.R. Powell, J.H. Kim, Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries, J. Phys. Chem. 117 (2013) 15947−15957.

DOI: 10.1021/jp405158m

Google Scholar

[4] Y. Wang, Q. Peng, G. Yang, Z. Yang, L.C. Zhang, H. Long, Y.H. Huang, P.X. Lu, High-stability 5V spinel LiNi0.5Mn1.5O4 sputtered thin film electrodes by modifying with aluminium oxide, Electrochim. Acta. 136 (2014) 450–456.

DOI: 10.1016/j.electacta.2014.04.184

Google Scholar

[5] U. Nisar, R. Amin, R. Essehli, R.A. Shakoor, R. Kahraman,D. K. Kim, A.M. Khaleel, I. Belharouak, Extreme fast charging characteristics of zirconia modified LiNi0.5Mn1.5O4cathode for lithium ion batteries, J. Power Sources. 396 (2018) 774–781.

DOI: 10.1016/j.jpowsour.2018.06.065

Google Scholar

[6] H. D. Sun, B.B. Xia, W.W. Liu, G.Q, Fang, J.J. Wu, et al, Significant improvement in performances of LiNi0.5Mn1.5O4 through surface modification with high ordered Al-doped ZnO electro-conductive layer, Appl. Surf. Sci. 331 (2015) 309-314.

DOI: 10.1016/j.apsusc.2015.01.120

Google Scholar

[7] Q. Pang, Q. Fu, Y. H. Wang, Y. Q. Zhang, B. Zou, et al, Improved Electrochemical Properties of Spinel LiNi0.5Mn1.5O4 Cathode Materials by Surface Modification with RuO2 Nano particles, Electrochim. Acta. 152 (2015) 240-248.

DOI: 10.1016/j.electacta.2014.11.142

Google Scholar

[8] S.D. Dong, Y. Zhou, C.X. Hai, J. B. Zeng, Y.X. Sun, Y. Shen, X. Li, X.F. Ren, G.C. Qi, X.X. Zhang, L.X. Ma, Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials, Ceram. Int.45 (2019) 144-152.

DOI: 10.1016/j.ceramint.2018.09.145

Google Scholar

[9] W.K. Shin, Y.S. Lee and D.W. Kim, Study on the cycling performance of LiNi0.5Mn1.5O4 electrodes modified by reactive SiO2 nano particles, J. Mater. Chem. A. 2 (2014) 6863-6869.

Google Scholar

[10] Q.Q. Chen, Y.B. Wang, T.T. Zhang, W.M. Yin, J.W. Yang, X.Y. Wang, Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries, Electrochim. Acta. 83 (2012) 65-72.

DOI: 10.1016/j.electacta.2012.08.025

Google Scholar

[11] Y.M. Chung, Y.H. Shin, Y.Z. Liu, J.S. Park, L.C. Margez, A.T. Greszler, Synergetic effect of carbon and AlF3 coatings on the lithium titanium oxide anode material for high power lithium-ion batteries, J. Electroanal. Chem. 837 (2019) 240-245.

DOI: 10.1016/j.jelechem.2019.02.037

Google Scholar

[12] J. F. Zhang, T. Ren,J. G. Duan, X. Li, P. Dong, Y. J. Zhang, D. Wang, Enhanced High-Voltage Cycling Stability of Nickel-Rich Cathode Materials by Surface Modification Using LaFeO3 Ionic Conductor, Powder Mater. Energy Appl. 6(71) (2019) 1975-1980.

DOI: 10.1007/s11837-019-03446-3

Google Scholar

[13] Y.Y. Zhu, Q. Ling, Y.F. Liu, H. Wang, Y.F. Zhu, Photocatalytic performance of BiPO4 nanorods adjusted via defects, Appl. Catal. B-Environ. 187 (2016) 204-211.

DOI: 10.1016/j.apcatb.2016.01.012

Google Scholar

[14] Z.J. Peng, G.W. Yang, F.Q. Li, Z.H. Zhu, Z.Y. Liu, Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5 C by Li2SiO3 coating and Si4+ doping, J. Alloy. Compd. 762 (2018) 827-834.

DOI: 10.1016/j.jallcom.2018.05.226

Google Scholar

[15] K. Zhang, P. Li, M. Ma, J.H. Park, Designed seamless outer surface: Application for high voltage LiNi0.5Mn1.5O4 cathode with excellent cycling stability, J. Power Sources 336 (2016) 307-315.

DOI: 10.1016/j.jpowsour.2016.10.074

Google Scholar

[16] J. Zhu, Y.J. Li, L.L. Xue, Y.X. Chen, T.X. Lei, S.Y. Deng, G.L. Cao, Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating, J. Alloy. Compd. 773 (2019) 112-120.

DOI: 10.1016/j.jallcom.2018.09.237

Google Scholar

[17] Y.N. Sun, H. Dong, Y.L. Xu, Y. Zhang, C.J. Zhao, D. Wang, Z. Liu, D. Liu, Incorporating cyclized-Polyacrylonitrile with Li4Ti5O12 Nanosheet for High Performance Lithium Ion Battery Anode Material, Electrochim. Acta. 246 (2017) 106–114.

DOI: 10.1016/j.electacta.2017.05.080

Google Scholar

[18] Y.F. Deng, S.X. Zhao, D.H. Hu, C.W. Nan, Structure and electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 coated with Li-La-Zr-O solid electrolyte, J. Solid. State. Electro. chem. 18 (2014) 249-255.

DOI: 10.1007/s10008-013-2265-2

Google Scholar

[19] S.S. Duan, H.Y. Jin, J.X. Yu, E.N. Esfahani, B. Yang, J.L. Liu, Y.Z. Ren, Y. Chen, L.H. Lu, X.C. Tian, S. Hou, J.Y. Li, Non-equilibrium microstructure of Li1.4Al0.4Ti1.6(PO4)3 super ionic conductor by spark plasma sintering for enhanced ionic conductivity, Nano. Energy. 51 (2018) 19-25.

DOI: 10.1016/j.nanoen.2018.06.050

Google Scholar

[20] X.G. Liu, J. Tan, J. Fu, R.X. Yuan, H. Wen, and C.H. Zhang, Facile Synthesis of Nano sized Lithium-Ion-Conducting Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3 and Its Mechanical Nano composites with LiMn2O4 for Enhanced Cyclic Performance in Lithium Ion Batteries, ACS. Appl. Mater. Interfaces. 9 (2017) 11696-11703.

DOI: 10.1021/acsami.6b16233.s001

Google Scholar