Theoretical and Experimental Studies of Structural Defects in CeO2 Nanoparticles

Article Preview

Abstract:

The atomic structure and morphology of cerium oxide nanoparticles obtained by laser ablation are experimentally and theoretically investigated. Using transmission electron microscopy, X-ray diffractometry, and electron energy loss spectroscopy, it has been shown that particles are enriched in oxygen vacancies that stabilize their internal structure. The density functional method was used to study the dependence of the unit cell parameter of CeO2 nanoparticles on their size. An analysis of the charge density distribution shows a different structural distribution of Ce3+ and Ce4+ atoms in nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

68-73

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Scirè, L. Palmisano, Cerium Oxide (CeO2): Synthesis, Properties and Applications, Elsevier, 2020.

Google Scholar

[2] V. Seminko, P. Maksimchuk, I. Bespalova, A. Masalov, O. Viagin, E. Okrushko, N. Kononets, Y. Malyukin, Defect and intrinsic luminescence of CeO2 nanocrystals, Phys. Status Solidi B. (2016) 1–6.

DOI: 10.1002/pssb.201600488

Google Scholar

[3] Z. Yang, T.K. Woo, M. Baudin, M. Baudin, K. Hermansson, Atomic and electronic structure of unreduced and reduced CeO2 surfaces: A first-principles study, J. Chem. Phys. 120 (2004) 7741-7749.

DOI: 10.1063/1.1688316

Google Scholar

[4] M.A. Pugachevskii, Structural-defect formation in CeO2 nanoparticles upon laser ablation, Tech. Phys. Lett. 43(8) (2017) 698–700.

DOI: 10.1134/s1063785017080120

Google Scholar

[5] C. Frayret, A. Villesuzanne, M. Pouchard, F. Mauvy, J.-M. Bassat, J.-C. Grenier, Identifying doping strategies to optimize the oxide ion conductivity in ceria-based materials, J. Phys. Chem. C. 114 (2010) 19062–19076.

DOI: 10.1021/jp101156f

Google Scholar

[6] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[7] Y.X. Li, X.Zh. Zhou, Y. Wang, X.Z. You, Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide, Mater. Lett. 58 (2003) 245-249.

DOI: 10.1016/s0167-577x(03)00454-3

Google Scholar

[8] G. Bertoni, J. Verbeeck, Accuracy and precision in model based EELS quantification, Ultramicroscopy 108 (2008) 782-790.

DOI: 10.1016/j.ultramic.2008.01.004

Google Scholar

[9] J. Verbeeck, S.V. Aert, G. Bertoni Model-based quantification of EELS spectra: Including the fine structure, Ultramicroscopy 106 (2006) 976-980.

DOI: 10.1016/j.ultramic.2006.05.006

Google Scholar

[10] M.A. Pugachevskii, Morphology and phase changes in laser-ablated TiO2 particles during thermal annealing, Tech. Phys. Lett. 38 (2012) 328-331.

DOI: 10.1134/s1063785012040128

Google Scholar

[11] R.K. Hailstone, A.G. DiFrancesco, J.G. Leong, T.D. Allston, K.J. Reed, A study of lattice expansion in CeO2 nanoparticles by transmission electron microscopy, J. Phys. Chem. C 113 (2009) 15155–15159.

DOI: 10.1021/jp903468m

Google Scholar

[12] C. Paun, O.V. Safonova, J. Szlachetko, P.M. Abdala, M. Nachtegaal, J. Sa, E. Kleymenov, A. Cervellino, F. Krumeich, J.A. van Bokhoven, Polyhedral CeO2 nanoparticles: size-dependent geometrical and electronic structure, J. Phys. Chem. C 116 (2012) 7312−7317.

DOI: 10.1021/jp300342b

Google Scholar

[13] M. Gasgnier, G. Schiffmacher, P.E. Caro, L. Eyring, The formation of rare earth oxides far from equilibrium, J. Less-Comm. Metal. 116 (1986) 31-42.

DOI: 10.1016/0022-5088(86)90214-6

Google Scholar

[14] N.V. Skorodumova, M. Baudin, K. Hermansson, Surface properties of CeO2 from first principles, Phys. Rev. B. 69 (2004) 075401. 10.1103/PhysRevB.69.075401.

Google Scholar

[15] G. Möbus, Z. Saghi, D.C. Sayle, U.M. Bhatta, A. Stringfellow, T.X.T. Sayle, Dynamics of polar surfaces on ceria nanoparticles observed in situ with single-atom resolution, Adv. Funct. Mater. 21 (2011) 1971–(1976).

DOI: 10.1002/adfm.201002135

Google Scholar

[16] Y. Lin, Z. Wu, J. Wen, K.R. Poeppelmeier, L.D. Marks, Imaging the atomic surface structures of CeO2 nanoparticles, Nano Lett. 14 (2014) 191-196.

DOI: 10.1021/nl403713b

Google Scholar

[17] R. Cerf, The Wulff Crystal in Ising and Percolation Models, Springer, Berlin, 2006.

Google Scholar

[18] X. Xu, Z. Saghi, R. Gay, G. Möbus, Reconstruction of 3D morphology of polyhedral nanoparticles, Nanotechnology 18 (2007) 225501.

DOI: 10.1088/0957-4484/18/22/225501

Google Scholar

[19] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272-1276.

DOI: 10.1107/s0021889811038970

Google Scholar