[1]
S. Scirè, L. Palmisano, Cerium Oxide (CeO2): Synthesis, Properties and Applications, Elsevier, 2020.
Google Scholar
[2]
V. Seminko, P. Maksimchuk, I. Bespalova, A. Masalov, O. Viagin, E. Okrushko, N. Kononets, Y. Malyukin, Defect and intrinsic luminescence of CeO2 nanocrystals, Phys. Status Solidi B. (2016) 1–6.
DOI: 10.1002/pssb.201600488
Google Scholar
[3]
Z. Yang, T.K. Woo, M. Baudin, M. Baudin, K. Hermansson, Atomic and electronic structure of unreduced and reduced CeO2 surfaces: A first-principles study, J. Chem. Phys. 120 (2004) 7741-7749.
DOI: 10.1063/1.1688316
Google Scholar
[4]
M.A. Pugachevskii, Structural-defect formation in CeO2 nanoparticles upon laser ablation, Tech. Phys. Lett. 43(8) (2017) 698–700.
DOI: 10.1134/s1063785017080120
Google Scholar
[5]
C. Frayret, A. Villesuzanne, M. Pouchard, F. Mauvy, J.-M. Bassat, J.-C. Grenier, Identifying doping strategies to optimize the oxide ion conductivity in ceria-based materials, J. Phys. Chem. C. 114 (2010) 19062–19076.
DOI: 10.1021/jp101156f
Google Scholar
[6]
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.
DOI: 10.1103/physrevb.59.1758
Google Scholar
[7]
Y.X. Li, X.Zh. Zhou, Y. Wang, X.Z. You, Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide, Mater. Lett. 58 (2003) 245-249.
DOI: 10.1016/s0167-577x(03)00454-3
Google Scholar
[8]
G. Bertoni, J. Verbeeck, Accuracy and precision in model based EELS quantification, Ultramicroscopy 108 (2008) 782-790.
DOI: 10.1016/j.ultramic.2008.01.004
Google Scholar
[9]
J. Verbeeck, S.V. Aert, G. Bertoni Model-based quantification of EELS spectra: Including the fine structure, Ultramicroscopy 106 (2006) 976-980.
DOI: 10.1016/j.ultramic.2006.05.006
Google Scholar
[10]
M.A. Pugachevskii, Morphology and phase changes in laser-ablated TiO2 particles during thermal annealing, Tech. Phys. Lett. 38 (2012) 328-331.
DOI: 10.1134/s1063785012040128
Google Scholar
[11]
R.K. Hailstone, A.G. DiFrancesco, J.G. Leong, T.D. Allston, K.J. Reed, A study of lattice expansion in CeO2 nanoparticles by transmission electron microscopy, J. Phys. Chem. C 113 (2009) 15155–15159.
DOI: 10.1021/jp903468m
Google Scholar
[12]
C. Paun, O.V. Safonova, J. Szlachetko, P.M. Abdala, M. Nachtegaal, J. Sa, E. Kleymenov, A. Cervellino, F. Krumeich, J.A. van Bokhoven, Polyhedral CeO2 nanoparticles: size-dependent geometrical and electronic structure, J. Phys. Chem. C 116 (2012) 7312−7317.
DOI: 10.1021/jp300342b
Google Scholar
[13]
M. Gasgnier, G. Schiffmacher, P.E. Caro, L. Eyring, The formation of rare earth oxides far from equilibrium, J. Less-Comm. Metal. 116 (1986) 31-42.
DOI: 10.1016/0022-5088(86)90214-6
Google Scholar
[14]
N.V. Skorodumova, M. Baudin, K. Hermansson, Surface properties of CeO2 from first principles, Phys. Rev. B. 69 (2004) 075401. 10.1103/PhysRevB.69.075401.
Google Scholar
[15]
G. Möbus, Z. Saghi, D.C. Sayle, U.M. Bhatta, A. Stringfellow, T.X.T. Sayle, Dynamics of polar surfaces on ceria nanoparticles observed in situ with single-atom resolution, Adv. Funct. Mater. 21 (2011) 1971–(1976).
DOI: 10.1002/adfm.201002135
Google Scholar
[16]
Y. Lin, Z. Wu, J. Wen, K.R. Poeppelmeier, L.D. Marks, Imaging the atomic surface structures of CeO2 nanoparticles, Nano Lett. 14 (2014) 191-196.
DOI: 10.1021/nl403713b
Google Scholar
[17]
R. Cerf, The Wulff Crystal in Ising and Percolation Models, Springer, Berlin, 2006.
Google Scholar
[18]
X. Xu, Z. Saghi, R. Gay, G. Möbus, Reconstruction of 3D morphology of polyhedral nanoparticles, Nanotechnology 18 (2007) 225501.
DOI: 10.1088/0957-4484/18/22/225501
Google Scholar
[19]
K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272-1276.
DOI: 10.1107/s0021889811038970
Google Scholar