[1]
V.M. Sizyakov, A.A. Vlasov, V.Yu. Bazhin, Strategy tasks of the Russian metallurgical complex, Tsvetnye Metally. 1 (2016) 32-37.
DOI: 10.17580/tsm.2016.01.05
Google Scholar
[2]
A.E. Burdonov, V.V. Barakhtenko, E.V. Zelinskaya, K.V. Prokhorov, Substantiating the use of fine-dispersed waste product from lead-acid batteries recycling in the production of composite materials, Tsvetnye Metally. 6 (2019) 52-60.
DOI: 10.17580/tsm.2019.06.08
Google Scholar
[3]
N.V. Nemchinova, V.E. Chernykh, A.A. Tyutrin, A.E. Patrushov, Extraction of zinc and iron from electrosmelting dust, Steel in Translation. 5 (2016) 368-372.
DOI: 10.3103/s0967091216050090
Google Scholar
[4]
E.V. Zelinskaya, N.A. Tolmacheva, V.V. Barakhtenko, N.E. Garashchenko, A.A. Garashchenko, Waste-Based Construction Materials, International Journal of Engineering Research in Africa. 41 (2019) 88-102.
DOI: 10.4028/www.scientific.net/jera.41.88
Google Scholar
[5]
S.N. Fedorov, E.M. Gutema, V.Yu. Bazhin, E.S. Gorlanov, Complex treatment to solve the problems of utilization and prolongation of the aluminum pot lining life cycle, Sixth International Conference on Industrial & Hazardous Waste Management. (2018) 1-8.
Google Scholar
[6]
N.V. Nemchinova, L.V. Shumilova, S.P. Salkhofer, K.K. Razmakhnin, O.A. Chernova, Complex sustainable waste management. Metallurgical industry, Publishing House of Academy of Natural History, Moscow, (2016).
Google Scholar
[7]
A.E. Anikin, G.V. Galevskii, V.V. Rudneva, Production of silicon carbide from microsilica waste by reduction with lignite semicoke, Steel in Translation. 47 (2017) 108-112.
DOI: 10.3103/s0967091217020024
Google Scholar
[8]
V.A. Sergeev, Yu.F. Sergeeva, S.V. Mamyachenkov, O.S. Anisimova, S.V. Karelov, Processing of technogenic lead-containing intermediates using complexing agent solutions, Metallurgist. 57 (2013) 80-82.
DOI: 10.1007/s11015-013-9694-0
Google Scholar
[9]
V.V. Somov, N.V. Nemchinova, V.A. Bychinskii, Mathematical modeling of hydrometallurgical processing of dismounted сarbon pot lining of aluminum reduction cells, Irkutsk: Proceedings of Irkutsk State Technical University. 4 (2019) 829-843.
DOI: 10.21285/1814-3520-2019-4-829-843
Google Scholar
[10]
A.E. Burdonov, E.V. Zelinskaya, L.V. Gavrilenko, A.A. Gavrilenko, Investigation of substantial composition of alumina-bearing material of aluminium electrolysers for usage in primary aluminium technology, Tsvetnye Metally. 3 (2018) 32-38.
DOI: 10.17580/tsm.2018.03.05
Google Scholar
[11]
B.P. Safonov, G.V. Serov, S.V. Vinogradov, B. V. Molchanov, A.N. Polivanov, Ways to use pulverized waste production of silicon ferroalloys, Steel. 3 (1985) 43-45.
Google Scholar
[12]
S.V. Vinogradov, B.V. Molchanov, A.A. Bashkatov, Prospects for the use of dust gas purification production of ferrosilicon, Steel. 4 (1989) 41-44.
Google Scholar
[13]
N.V. Nemchinova, G.G. Mineev, A.A. Tyutrin, A.A. Yakovleva, Utilization of dust from silicon production, Steel in Translation. 12 (2017) 763–767.
DOI: 10.3103/s0967091217120087
Google Scholar
[14]
N.V. Nemchinova, M.S. Leonova, A.A. Tyutrin, Experimental works on pelletized charge smelting in silicon production, Irkutsk: Proceedings of Irkutsk State Technical University. 4 (2019) 829–843.
DOI: 10.21285/1814-3520-2017-1-209-217
Google Scholar
[15]
H. Kraus, E. Pichocki, Pozzolanic properties of fly ashes from metallurgical furnaces, Cement-Wapno-Gips. 28 (1973) 88-91.
Google Scholar
[16]
V.V. Kondrat'ev, , N.V. Nemchinova, N.A. Ivanov, V.A. Ershov, I.A. Sysoev, New production solutions for processing silicon and aluminum production waste. Metallurgist. 57 (2013) 455-459.
DOI: 10.1007/s11015-013-9754-5
Google Scholar
[17]
V.N. Petrovskaya, V.V. Kоndratiev, A.A. Nemarov, A.A. Petrovsky, Carbon nanotubes in the production of crystalline silicon. Ecology and Industry of Russia, 21 (2017) 17-23.
DOI: 10.18412/1816-0395-2017-1-17-23
Google Scholar
[18]
E. Ringdalen, M. Tangstad, Reaction mechanisms in carbothermic production of silicon, study of selected reactions, The Minerals, Metals & Materials Society. (2012) 195–203.
DOI: 10.1002/9781118364765.ch24
Google Scholar
[19]
M.I. Gasik, M.M. Gasik, Electrothermy of silicon, National Metallurgical Academy of Ukraine, Dnepropetrovsk, (2011).
Google Scholar
[20]
J. Vangskåsen, Metal-producing Mechanisms in the Carbothermic Silicon Process, NTNU-Trondheim, (2012).
Google Scholar
[21]
I. Kero, S. Grådahl, G. Tranell, Airborne emissions from Si/FeSi production, JOM. 2 (2017) 365-380.
DOI: 10.1007/s11837-016-2149-x
Google Scholar
[22]
S.I. Popov, Silicon metallurgy in three-phase ore-thermal furnaces, ZAO Kremnij,, Irkutsk, (2004).
Google Scholar
[23]
A.A. Vasil'ev, A.A. Tyutrin, The analysis of the technological cycle and methods for assessing the properties of materials in metallurgy, ISTU, Irkutsk, (2017).
Google Scholar
[24]
A.N. Zelikman, G.M. Vol'dman, L.V. Belyavskaya, Theory of hydrometallurgical processes, Metallurgy, Moscow, (1975).
Google Scholar