[1]
D. Ferguson, Approaching zero discharge: in plant evaluation of zinc thermal diffusion coating technology, Phase I, Clean. Technol. Environ. Policy. 8 (2006) 198–202.
DOI: 10.1007/s10098-006-0045-8
Google Scholar
[2]
Heavy Metals in Waste. Final Report. European Commission DG ENV. E3. Project ENV.E.3/ ETU/ 2000/0058. February (2002).
Google Scholar
[3]
Kroehler C.J. Potable Water Quality Standards and Regulations: A Historical and World Overview. In: Younos T., Grady C. (eds) Potable Water. The Handbook of Environmental Chemistry, vol 30. Springer, Cham, (2014).
DOI: 10.1007/978-3-319-06563-2_1
Google Scholar
[4]
K. Dermentizis, A. Christoforidis, E. Valsamidou, A. Lazaridou, N. Kokkinos Removal of hexavalent chromium from electroplating wastewaters by electrocoagulation with iron electrodes, Global NEST Journal, Vol 13,4 (2001), 412-418.
DOI: 10.30955/gnj.000770
Google Scholar
[5]
Sayak Mitra, Avipsha Sarkar, Shampa Sen. Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnol. Environ. Eng. Vol. 2(11) (2017).
DOI: 10.1007/s41204-017-0022-y
Google Scholar
[6]
D.B. Sarode, R.N. Jadhav, V.A. Khatik, S.T. Ingle, S. B. Attarde, Extraction and Leaching of Heavy Metals from Thermal Power Plant Fly Ash and Its Admixtures, Polish J. of Environ. Stud. 19 (6) (2010) 1325-1330.
Google Scholar
[7]
Robila Nawaz, Khurshid Ali, Nauman Ali and Alia Khaliq, Removal of Chromium(VI) from Industrial Effluents Through Supported Liquid Membrane Using Trioctylphosphine Oxide as a Carrier, J. Braz. Chem. Soc., Vol. 27 ( 1), (2016), 209-220.
DOI: 10.5935/0103-5053.20150272
Google Scholar
[8]
S.K. Verma, V. Khandegar, A.K. Saroha, Removal of Chromium from Electroplating Industry Effluent Using Electrocoagulation, J. Hazard. Toxic Radioact. Waste. 17 (2013) 146-152.
DOI: 10.1061/(asce)hz.2153-5515.0000170
Google Scholar
[9]
M.M. Emamjomeh, M. Sivakumar, Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes, Journal of Environmental Management. 90 (2009) 1663-1679.
DOI: 10.1016/j.jenvman.2008.12.011
Google Scholar
[10]
A.E. Bobylev, V.F. Markov, L.N. Maskaeva, A.Yu. Chufarov, Composition, Structure, and Functional Properties of Organomineral Composite Sorbents KU-2×8–ZnS and KU-2×8–PbS, Russian Journal of Applied Chemistry. 87(5) (2014) 572−578.
DOI: 10.1134/s1070427214050061
Google Scholar
[11]
Y.V. Anikin, V.I. Shilkov, Modern materials and technologies of industrial wastewater treatment. Russian Journal of Construction Science and Technology, 2 (2018).
Google Scholar
[12]
A.A. Akhmetov, R.V. Akhmetova, Development of water saving technology for water supply system of industrial enterprises, IOP Conf. Series: Materials Science and Engineering, 134 (2016), 012001.
DOI: 10.1088/1757-899x/134/1/012001
Google Scholar
[13]
D.J. Reeve, Environmental improvements in the metal finishing industry in Australasia, Journal of Cleaner Production. 15 (8–9) (2007) 756–763.
DOI: 10.1016/j.jclepro.2006.06.013
Google Scholar
[14]
A. Husain, I. Javed, N.A. Khan Characterization and treatment of electroplating industry wastewater using Fenton's reagent, Journal of Chemical and Pharmaceutical Research, 6(1) (2014) 622-627.
Google Scholar
[15]
Durney L.J. Electroplating Engineering Handbook, Springer US, 2014, 790 p.
Google Scholar
[16]
M. Haseena, M.F. Malik, A. Javed, S. Arshad, N. Asif, S. Zulfiqar, J. Hanif, Water pollution and human health, Environmental Risk Assessment and Remediation. 1(3) (2017).
DOI: 10.4066/2529-8046.100020
Google Scholar
[17]
N.N. Maximous, G.F. Nakhla, W. K. Wan, Removal of Heavy Metals from Wastewater by Adsorption and Membrane Processes: a Comparative Study, International Journal of Environmental and Ecological Engineering. 4(4) 2010 125-130.
Google Scholar
[18]
M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian Journal of Chemistry. 4 (2011) 361–377.
DOI: 10.1016/j.arabjc.2010.07.019
Google Scholar
[19]
Manuela D. Machado & Helena M. V. M. Soares & Eduardo V. Soares, Removal of Chromium, Copper, and Nickel from an Electroplating Effluent Using a Flocculent Brewer's Yeast Strain of Saccharomyces cerevisiae, Water Air Soil Pollution (2010) 212:199–204.
DOI: 10.1007/s11270-010-0332-1
Google Scholar
[20]
T. Panayotova, M. Dimova-Todorova, I. Dobrevsky, Purification and reuse of heavy metals containing wastewaters from electroplating plants, Desalination. 206 (2007) 135–140.
DOI: 10.1016/j.desal.2006.03.563
Google Scholar
[21]
E.E. Pérez-Ramírez, M. de la Luz-Asunción, A.L. Martínez-Hernández, C.Velasco-Santos, Graphene Materials to Remove Organic Pollutants and Heavy Metals from Water: Photocatalysis and Adsorption, in Wenbin Cao (Ed.), Semiconductor Photocatalysis - Materials, Mechanisms and Applications, InTech, pp.491-522.
DOI: 10.5772/62777
Google Scholar
[22]
Renu Dubey, J. Bajpai, A.K. Bajpai, Green synthesis of graphene sand composite (GSC) as novel adsorbent for efficient removal of Cr (VI) ions from aqueous solution, Journal of Water Process Engineering. 5 (2015) 83–94.
DOI: 10.1016/j.jwpe.2015.01.004
Google Scholar
[23]
S.A. Cavaco, S. Fernandes, M.M. Quina, Lic´ınio M. Ferreira Removal of chromium from electroplating industry effluents by ion exchange resins, Journal of Hazardous Materials 144 (2007) 634–638.
DOI: 10.1016/j.jhazmat.2007.01.087
Google Scholar