[1]
V.V. Lodeishchikov, Technology of gold and silver recovery from refractory ores. Irkutsk: Irgiredmet, (1999).
Google Scholar
[2]
A.A. Shoppert, I.V. Loginova, D.A. Rogozhnikov, K.A. Karimov, L.I. Chaikin. Increased As Adsorption on Maghemite-Containing Red Mud Prepared by the Alkali Fusion-Leaching Method. Minerals, 9 (2019) 60.
DOI: 10.3390/min9010060
Google Scholar
[3]
K.A. Karimov, D.A. Rogozhnikov, E.A. Kuzas, A.A. Shoppert. Leaching kinetics of arsenic sulfide-containing materials by copper sulfate solution. Metals, 10 (2020) 7.
DOI: 10.3390/met10010007
Google Scholar
[4]
B.V. Kolmogorchev, A.A. Varenichev. Problems of processing of poor and persistent gold-bearing ores. Mining Information Analytical Bulletin. 2 (2016) 204-218.
Google Scholar
[5]
C.G. Anderson, L.G. Twidwell, Hydrometallurgical processing of gold-bearing copper enargite concentrates. Can. Metall. Quart. 47 (2008) 337–346.
DOI: 10.1179/cmq.2008.47.3.337
Google Scholar
[6]
C.G. Anderson, K.D. Harrison, L.E. Krys, Theoretical considerations of sodium nitrite oxidation and fine grinding in refractory precious-metal concentrate pressure leaching. Miner. Metall. Proc., 13 (1996) 4–11.
DOI: 10.1007/bf03402709
Google Scholar
[7]
D.A. Rogozhnikov, A.A. Shoppert, O.A. Dizer, K.A. Karimov, R.E. Rusalev, Leaching Kinetics of Sulfides from Refractory Gold Concentrates by Nitric Acid. Metals, 9 (2019) 465.
DOI: 10.3390/met9040465
Google Scholar
[8]
D.A. Rogozhnikov, R.E. Rusalev, O.A. Dizer, S.S. Naboychenko, Nitric acid loosening of rebellious sulphide concentrates containing precious metals. Tsvetn. Met., 16 (2018) 38–40.
DOI: 10.17580/tsm.2018.12.05
Google Scholar
[9]
Sh. R. Samihov, Z.A. Zinchenko, H.I. Holov, Nitric acid technology of opening of persistent gold, copper, and arsenic concentrates of the Taror deposit, Polytechnic herald. Series: Engineering studies. 4 (2016) 26-32.
Google Scholar
[10]
L. Jian, W. Shuming, L. Dan, L. Mengyang, Response surface methodology for optimization of copper leaching from a lowgrade flotation middling, Minerals and Metallurgical Processing, 3 (2011) 139-145.
Google Scholar
[11]
F. Habashi, Nitric acid in the hydrometallurgy of sulfides, Epd Congress, (1999) 357-364.
Google Scholar
[12]
C.G. Anderson, Treatment of copper ores and concentrates with industrial nitrogen species catalyzed pressure leaching and non-cyanide precious metals recovery. J. Miner. Met. Mater. Soc. 55 (4) (2003) 32–36.
DOI: 10.1007/s11837-003-0085-z
Google Scholar
[13]
D.-X. Li, Developments on the pretreatment of refractory gold minerals by nitric acid. World Gold Conference 2009, The Southern African Institute of Mining and Metallurgy, (2009) 145-150.
Google Scholar
[14]
D. Fornasiero, D. Fullston, C. Li, J. Ralston, Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution. Int. J. Miner. Process. 61 (2), (2001) 109–119.
DOI: 10.1016/s0301-7516(00)00029-6
Google Scholar
[15]
M.C. Ruiz, F. Daroch, R. Padilla, Digestion kinetics of arsenic removal from enargite–tennantite concentrates. Miner. Eng. 79 (2015) 47–53.
DOI: 10.1016/j.mineng.2015.05.004
Google Scholar
[16]
P. A. Riveros, J. E. Dutrizac, The leaching of tennantite, tetrahedrite and enargite in acidic sulfate and chloride media. Canadian Metallurgical Quarterly, 47 (2008) 235–244.
DOI: 10.1179/cmq.2008.47.3.235
Google Scholar
[17]
K. Sasaki, K. Takatsugi, K. Ishikura, T. Hirajima, Spectroscopic study on oxidative dissolution of chalcopyrite, enargite and tennantite at different pH values. Hydrometallurgy, 100 (2010) 144–151.
DOI: 10.1016/j.hydromet.2009.11.007
Google Scholar
[18]
J. Asbjornsson, G. Kelsall, R. Pattrick, D. Vaughan, P. Wincott, G. Hope, Electrochemical and surface analytical studies of tennantite in acid solution, Journal of Electroanalytical Chemistry, 570 (2004) 145-152.
DOI: 10.1016/j.jelechem.2004.03.026
Google Scholar
[19]
G. Helz, and J. Tossell, Thermodynamic model of arsenic speciation in sulfidic waters: A novel use of ab initio computations, Geochemica et Cosmochimica Acta, 72 (2008) 4457-4468.
DOI: 10.1016/j.gca.2008.06.018
Google Scholar
[20]
R. Gow, H. Huang, C. Young, Utility of mass-balanced Eh-pH diagrams I: Application of Gibbs phase rule, Minerals & Metallurgical Processing, 33(2) (2015) 58-67.
DOI: 10.19150/mmp.6622
Google Scholar