[1]
V.V. Smogunov, D.V. Kochetkov, A.Shorin, System analysis of methods and means of anti-icing. Models, systems, networks in economics, technology, nature and society. 4 (12) (2014)146-154.
Google Scholar
[2]
L.V. Solovyanchik, S.V. Kondrashov, V.S. Nagornaya, A.A. Melnikov, Feature of receipt anti-icing coating (review), Proceedings of VIAM. 6 (66) (2018) 77-84.
Google Scholar
[3]
S.V. Gnedenkov, V.S. Egorkin, S.L. Sinebryukhov, S.L. Vyaliy, A.M. Emelyanenko, L.B. Boinovich, Super-hydrophobic aluminum alloy protective coatings, Bulletin of the Far Eastern Branch of the Russian Academy of Sciences. 2 (2014) 52-59. https://cyberleninka.ru/article/n/supergidrofobnye-zaschitnye-pokrytiya-na-splave-alyuminiya.
DOI: 10.4028/www.scientific.net/ssp.213.176
Google Scholar
[4]
A.I. Bykhovsky, Distribution, Kiev, Naukova Dumka, (1983).
Google Scholar
[5]
R.N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry. 28 (8) (1936) 988-994.
DOI: 10.1021/ie50320a024
Google Scholar
[6]
B.V. Deryagin, On the dependence of the contact angle on the microrelief or roughness of the wetted surface. Doklady AN SSSR. 51(5) (1946) 357-360.
Google Scholar
[7]
A.B. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday Society. 40 (1944) 546–551.
DOI: 10.1039/tf9444000546
Google Scholar
[8]
L.V. Boynovich, Superhydrophobic coatings are a new class of multifunctional materials. Bulletin of the Russian Academy of Sciences. 8(1) (2013) 10-22.
Google Scholar
[9]
L.Boinovich, A.M. Emelyanenko, V.V. Korolev, A.S. Pashinin, Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay, Langmuir. 30(6) (2014) 1659–1668.
DOI: 10.1021/la403796g
Google Scholar
[10]
J.B. Boreyko, C.P. Collier, Delayed frost growth on jumping-drop superhydrophobic surfaces, ACS nano. 7(2) (2013) 1618–1627.
DOI: 10.1021/nn3055048
Google Scholar
[11]
L.Mishchenko, B. Yatton, V. Bahadur et al., Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets, ACS nano. 4(12) (2010) 7699–7707.
DOI: 10.1021/nn102557p
Google Scholar
[12]
V.I. Loganina, Superhydrophobic coating based on silicone resin SILRES® MSE 100, IOP Conf. Series: Materials Science and Engineering. 656 (2019) 012031.
DOI: 10.1088/1757-899x/656/1/012031
Google Scholar
[13]
V.I. Loganina, Development of the composition of anti-specific coating, Materials Today: Proceedings. 19(2019)2218-2220 https://doi.org/10.1016/j.matpr.2019.07.536 2214-7853/_.
DOI: 10.1016/j.matpr.2019.07.536
Google Scholar
[14]
V.I. Loganina and S. Kislitsyna, Estimation of anti-icing properties of coatings, E3S Web of Conferences. 135 (2019) 01009.
DOI: 10.1051/e3sconf/201913501009
Google Scholar
[15]
G.A. Zisman, O.M. Todes, General Physics Course Moscow, Science, (1967).
Google Scholar
[16]
M.A. Frolova, A.S. Tutygin, A.M. Aizenshtadt, V.S. Lesovik, T.A. Makhova, T.A. Pospelova, A criterion for assessing the energy properties of a surface, Nanosystems: physics, chemistry, mathematics. 2 (4) (2001) 120-125.
Google Scholar
[17]
A.M. Aizenshtadt, M.A. Frolova, A.S. Tutygin, Fundamentals of thermodynamics of finely dispersed rock systems for building composites (theory and practice), Arkhangelsk, CPC NArFU, (2013).
Google Scholar