Spheroid Nickel Nanoparticles Synthesized in CTAB Solution Using Gamma Radiation

Article Preview

Abstract:

Pure nickel nanoparticles with some paired grain shaped has been successfully synthesized using gamma radiation technique in aqueous system at ambient temperature without using reducing agent. Cetyl trimethylammonium bromide was used to prevent oxidation during radiolysis process and help to shape the nickel nanoparticles into spheroid. Synthesized nanoparticles were characterized using X-ray diffraction, tunnelling electron microscopy and vibrating sample magnetometer. The particles formed are crystallized with fcc phase without any oxidation state. The particle size ranging from 20 – 50 nm which consists of unique morphology of paired spheroid. Vibrating sample magnetometer analysis shows that sample has ferromagnetic properties with value of magnetic remanence smaller that bulk due to its size.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

138-143

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Abedini, A.R. Daud, M.A.A. Hamid, N.K. Othman, E. Saion, A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles, Nanoscale Res. Lett. 8 (2013) 1–10. https://doi.org/10.1186/1556-276X-8-474.

DOI: 10.1186/1556-276x-8-474

Google Scholar

[2] H. Wang, X. Kou, J. Zhang, J. Li, Large scale synthesis and characterization of Ni nanoparticles by solution reduction method, Bull. Mater. Sci. 31 (2008) 97–100. https://doi.org/10.1007/s12034-008-0017-1.

DOI: 10.1007/s12034-008-0017-1

Google Scholar

[3] L.M. Hoyos-Palacio, D. Paola, C. Castro, I.C. Ortiz-trujillo, L. Elena, B. Palacio, B. Janeth, G. Upegui, N. Javier, E. Mora, J. Antonio, C. Cornelio, Compounds of carbon nanotubes decorated with silver nanoparticles via in-situ by chemical vapor deposition (CVD), Integr. Med. Res. 8 (2019) 5893–5898. https://doi.org/10.1016/j.jmrt.2019.09.062.

DOI: 10.1016/j.jmrt.2019.09.062

Google Scholar

[4] G. Hongfang, Y. Hui, W. Chuang, Results in Physics Controllable preparation and mechanism of nano-silver mediated by the microemulsion system of the clove oil, Results Phys. 7 (2017) 3130–3136. https://doi.org/10.1016/j.rinp.2017.08.032.

DOI: 10.1016/j.rinp.2017.08.032

Google Scholar

[5] S. Rahim, M.S. Ghamsari, S. Radiman, Sharif University of Technology Surface modification of titanium oxide nanocrystals with PEG, Sci. Iran. 19 (2012) 948–953. https://doi.org/10.1016/j.scient.2012.03.009.

DOI: 10.1016/j.scient.2012.03.009

Google Scholar

[6] Z. Zhang, X. Chen, X. Zhang, C. Shi, Synthesis and magnetic properties of nickel and cobalt nanoparticles obtained in DMF solution, Solid State Commun. 139 (2006) 403–405. https://doi.org/10.1016/j.ssc.2006.06.040.

DOI: 10.1016/j.ssc.2006.06.040

Google Scholar

[7] A.M. Noor, S. Radiman, H.N. Ming, L.H. Ngee, M.A. Yarmo, S. Rahim, S.I. Ahmad, S.A. Shamsudin, M.S. Sajab, Sintesis dan Kawalan Morfologi Struktur-Nano TiO 2 Menggunakan Kaedah Hidroterma untuk Aplikasi sebagai Elektrod Sel Suria Sensitif Pewarna, Sains Malaysiana 42 (2013) 967–974.

Google Scholar

[8] S.I.B. Ahmad, S.B. Radiman, M.S.B. Hj Ahmad, Sintesis nanozarah kuprum dalam larutan kitosan menggunakan kaedah sinaran gama, Sains Malaysiana 43 (2014) 1751–1759.

Google Scholar

[9] E. Omurzak, R.A. Akai, A.B. Kyzy, A. Satyvaldiev, Effect of surfactant materials to nanoparticles formation under pulsed plasma conditions and their antibacterial properties, Mater. Today Proc. 5 (2018) 15686–15695. https://doi.org/10.1016/j.matpr.2018.04.179.

DOI: 10.1016/j.matpr.2018.04.179

Google Scholar

[10] Y. Du, Y. Yang, X. Wang, X. Li, Q. Zhou, Hydrothermal synthesis and optical properties of CTAB modified nano-ZnO, Integr. Ferroelectr. 200 (2019) 161–167. https://doi.org/10.1080/10584587.2019.1592633.

DOI: 10.1080/10584587.2019.1592633

Google Scholar

[11] H. Zhao, X. Han, M. Han, L. Zhang, P. Xu, Preparation and electromagnetic properties of multiwalled carbon nanotubes/Ni composites by γ-irradiation technique, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 167 (2010) 1–5. https://doi.org/10.1016/j.mseb.2010.01.003.

DOI: 10.1016/j.mseb.2010.01.003

Google Scholar

[12] M.S. Abd El-Sadek, H.S. Wasly, K.M. Batoo, X-ray peak profile analysis and optical properties of CdS nanoparticles synthesized via the hydrothermal method, Appl. Phys. A Mater. Sci. Process. 125 (2019) 1–17. https://doi.org/10.1007/s00339-019-2576-y.

DOI: 10.1007/s00339-019-2576-y

Google Scholar

[13] P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys. 8 (2014) 123–134. https://doi.org/10.1007/s40094-014-0141-9.

DOI: 10.1007/s40094-014-0141-9

Google Scholar

[14] J. Huo, M. Wei, Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method, Mater. Lett. 63 (2009) 1183–1184. https://doi.org/10.1016/j.matlet.2009.02.024.

DOI: 10.1016/j.matlet.2009.02.024

Google Scholar

[15] Y.L. Min, K. Zhang, Y.C. Chen, Y.G. Zhao, Y. Huang, Free-template synthesis and magnetic properties of Ni micro-chains, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 163 (2009) 22–25. https://doi.org/10.1016/j.mseb.2009.04.016.

DOI: 10.1016/j.mseb.2009.04.016

Google Scholar

[16] N. Doʇan, A. Bingölbali, L. Arda, Preparation, structure and magnetic characterization of Ni doped ZnO nano-particles, J. Magn. Magn. Mater. 373 (2015) 226–230. https://doi.org/10.1016/j.jmmm.2014.03.053.

DOI: 10.1016/j.jmmm.2014.03.053

Google Scholar

[17] G. Zhang, J. Li, G. Zhang, L. Zhao, Room-Temperature Synthesis of Ni Nanoparticles as the Absorbent Used for Sewage Treatment, Adv. Mater. Sci. Eng. 2015 (2015) 1–5. https://doi.org/10.1155/2015/973648.

DOI: 10.1155/2015/973648

Google Scholar

[18] Z.G. Wu, M. Munoz, O. Montero, The synthesis of nickel nanoparticles by hydrazine reduction, Adv. Powder Technol. 21 (2010) 165–168. https://doi.org/10.1016/j.apt.2009.10.012.

DOI: 10.1016/j.apt.2009.10.012

Google Scholar

[19] F. Mohammadkhani, M. Montazer, M. Latifi, Microwave absorption and photocatalytic properties of magnetic nickel nanoparticles/recycled PET nanofibers web, J. Text. Inst. 110 (2019) 1606–1614. https://doi.org/10.1080/00405000.2019.1612501.

DOI: 10.1080/00405000.2019.1612501

Google Scholar

[20] S.S. Alruqi, S.A. Al-thabaiti, Z. Khan, Iron-nickel bimetallic nanoparticles : Surfactant assisted synthesis and their catalytic activities, J. Mol. Liq. 282 (2019) 448–455. https://doi.org/10.1016/j.molliq.2019.03.021.

DOI: 10.1016/j.molliq.2019.03.021

Google Scholar

[21] I.E. Fernández, J.E. Rodríguez-Páez, Wet-chemical preparation of TiO2-nanostructures using different solvents: Effect of CTAB concentration and tentative mechanism of particle formation, J. Alloys Compd. 780 (2019) 756–771. https://doi.org/10.1016/j.jallcom.2018.12.007.

DOI: 10.1016/j.jallcom.2018.12.007

Google Scholar

[22] S.M. Saleh, A.M. Soliman, M.A. Sharaf, V. Kale, B. Gadgil, Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still, J. Environ. Chem. Eng. 5 (2017) 1219–1226. https://doi.org/10.1016/j.jece.2017.02.004.

DOI: 10.1016/j.jece.2017.02.004

Google Scholar

[23] M. Biçer, I. Şişman, Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution, Powder Technol. 198 (2010) 279–284. https://doi.org/10.1016/j.powtec.2009.11.022.

DOI: 10.1016/j.powtec.2009.11.022

Google Scholar

[24] Q. Mu, Y. Wang, A simple method to prepare Ln(OH)3 (Ln = La, Sm, Tb, Eu, and Gd) nanorods using CTAB micelle solution and their room temperature photoluminescence properties, J. Alloys Compd. 509 (2011) 2060–2065. https://doi.org/10.1016/j.jallcom.2010.10.141.

DOI: 10.1016/j.jallcom.2010.10.141

Google Scholar