[1]
A. Abedini, A.R. Daud, M.A.A. Hamid, N.K. Othman, E. Saion, A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles, Nanoscale Res. Lett. 8 (2013) 1–10. https://doi.org/10.1186/1556-276X-8-474.
DOI: 10.1186/1556-276x-8-474
Google Scholar
[2]
H. Wang, X. Kou, J. Zhang, J. Li, Large scale synthesis and characterization of Ni nanoparticles by solution reduction method, Bull. Mater. Sci. 31 (2008) 97–100. https://doi.org/10.1007/s12034-008-0017-1.
DOI: 10.1007/s12034-008-0017-1
Google Scholar
[3]
L.M. Hoyos-Palacio, D. Paola, C. Castro, I.C. Ortiz-trujillo, L. Elena, B. Palacio, B. Janeth, G. Upegui, N. Javier, E. Mora, J. Antonio, C. Cornelio, Compounds of carbon nanotubes decorated with silver nanoparticles via in-situ by chemical vapor deposition (CVD), Integr. Med. Res. 8 (2019) 5893–5898. https://doi.org/10.1016/j.jmrt.2019.09.062.
DOI: 10.1016/j.jmrt.2019.09.062
Google Scholar
[4]
G. Hongfang, Y. Hui, W. Chuang, Results in Physics Controllable preparation and mechanism of nano-silver mediated by the microemulsion system of the clove oil, Results Phys. 7 (2017) 3130–3136. https://doi.org/10.1016/j.rinp.2017.08.032.
DOI: 10.1016/j.rinp.2017.08.032
Google Scholar
[5]
S. Rahim, M.S. Ghamsari, S. Radiman, Sharif University of Technology Surface modification of titanium oxide nanocrystals with PEG, Sci. Iran. 19 (2012) 948–953. https://doi.org/10.1016/j.scient.2012.03.009.
DOI: 10.1016/j.scient.2012.03.009
Google Scholar
[6]
Z. Zhang, X. Chen, X. Zhang, C. Shi, Synthesis and magnetic properties of nickel and cobalt nanoparticles obtained in DMF solution, Solid State Commun. 139 (2006) 403–405. https://doi.org/10.1016/j.ssc.2006.06.040.
DOI: 10.1016/j.ssc.2006.06.040
Google Scholar
[7]
A.M. Noor, S. Radiman, H.N. Ming, L.H. Ngee, M.A. Yarmo, S. Rahim, S.I. Ahmad, S.A. Shamsudin, M.S. Sajab, Sintesis dan Kawalan Morfologi Struktur-Nano TiO 2 Menggunakan Kaedah Hidroterma untuk Aplikasi sebagai Elektrod Sel Suria Sensitif Pewarna, Sains Malaysiana 42 (2013) 967–974.
Google Scholar
[8]
S.I.B. Ahmad, S.B. Radiman, M.S.B. Hj Ahmad, Sintesis nanozarah kuprum dalam larutan kitosan menggunakan kaedah sinaran gama, Sains Malaysiana 43 (2014) 1751–1759.
Google Scholar
[9]
E. Omurzak, R.A. Akai, A.B. Kyzy, A. Satyvaldiev, Effect of surfactant materials to nanoparticles formation under pulsed plasma conditions and their antibacterial properties, Mater. Today Proc. 5 (2018) 15686–15695. https://doi.org/10.1016/j.matpr.2018.04.179.
DOI: 10.1016/j.matpr.2018.04.179
Google Scholar
[10]
Y. Du, Y. Yang, X. Wang, X. Li, Q. Zhou, Hydrothermal synthesis and optical properties of CTAB modified nano-ZnO, Integr. Ferroelectr. 200 (2019) 161–167. https://doi.org/10.1080/10584587.2019.1592633.
DOI: 10.1080/10584587.2019.1592633
Google Scholar
[11]
H. Zhao, X. Han, M. Han, L. Zhang, P. Xu, Preparation and electromagnetic properties of multiwalled carbon nanotubes/Ni composites by γ-irradiation technique, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 167 (2010) 1–5. https://doi.org/10.1016/j.mseb.2010.01.003.
DOI: 10.1016/j.mseb.2010.01.003
Google Scholar
[12]
M.S. Abd El-Sadek, H.S. Wasly, K.M. Batoo, X-ray peak profile analysis and optical properties of CdS nanoparticles synthesized via the hydrothermal method, Appl. Phys. A Mater. Sci. Process. 125 (2019) 1–17. https://doi.org/10.1007/s00339-019-2576-y.
DOI: 10.1007/s00339-019-2576-y
Google Scholar
[13]
P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys. 8 (2014) 123–134. https://doi.org/10.1007/s40094-014-0141-9.
DOI: 10.1007/s40094-014-0141-9
Google Scholar
[14]
J. Huo, M. Wei, Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method, Mater. Lett. 63 (2009) 1183–1184. https://doi.org/10.1016/j.matlet.2009.02.024.
DOI: 10.1016/j.matlet.2009.02.024
Google Scholar
[15]
Y.L. Min, K. Zhang, Y.C. Chen, Y.G. Zhao, Y. Huang, Free-template synthesis and magnetic properties of Ni micro-chains, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 163 (2009) 22–25. https://doi.org/10.1016/j.mseb.2009.04.016.
DOI: 10.1016/j.mseb.2009.04.016
Google Scholar
[16]
N. Doʇan, A. Bingölbali, L. Arda, Preparation, structure and magnetic characterization of Ni doped ZnO nano-particles, J. Magn. Magn. Mater. 373 (2015) 226–230. https://doi.org/10.1016/j.jmmm.2014.03.053.
DOI: 10.1016/j.jmmm.2014.03.053
Google Scholar
[17]
G. Zhang, J. Li, G. Zhang, L. Zhao, Room-Temperature Synthesis of Ni Nanoparticles as the Absorbent Used for Sewage Treatment, Adv. Mater. Sci. Eng. 2015 (2015) 1–5. https://doi.org/10.1155/2015/973648.
DOI: 10.1155/2015/973648
Google Scholar
[18]
Z.G. Wu, M. Munoz, O. Montero, The synthesis of nickel nanoparticles by hydrazine reduction, Adv. Powder Technol. 21 (2010) 165–168. https://doi.org/10.1016/j.apt.2009.10.012.
DOI: 10.1016/j.apt.2009.10.012
Google Scholar
[19]
F. Mohammadkhani, M. Montazer, M. Latifi, Microwave absorption and photocatalytic properties of magnetic nickel nanoparticles/recycled PET nanofibers web, J. Text. Inst. 110 (2019) 1606–1614. https://doi.org/10.1080/00405000.2019.1612501.
DOI: 10.1080/00405000.2019.1612501
Google Scholar
[20]
S.S. Alruqi, S.A. Al-thabaiti, Z. Khan, Iron-nickel bimetallic nanoparticles : Surfactant assisted synthesis and their catalytic activities, J. Mol. Liq. 282 (2019) 448–455. https://doi.org/10.1016/j.molliq.2019.03.021.
DOI: 10.1016/j.molliq.2019.03.021
Google Scholar
[21]
I.E. Fernández, J.E. Rodríguez-Páez, Wet-chemical preparation of TiO2-nanostructures using different solvents: Effect of CTAB concentration and tentative mechanism of particle formation, J. Alloys Compd. 780 (2019) 756–771. https://doi.org/10.1016/j.jallcom.2018.12.007.
DOI: 10.1016/j.jallcom.2018.12.007
Google Scholar
[22]
S.M. Saleh, A.M. Soliman, M.A. Sharaf, V. Kale, B. Gadgil, Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still, J. Environ. Chem. Eng. 5 (2017) 1219–1226. https://doi.org/10.1016/j.jece.2017.02.004.
DOI: 10.1016/j.jece.2017.02.004
Google Scholar
[23]
M. Biçer, I. Şişman, Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution, Powder Technol. 198 (2010) 279–284. https://doi.org/10.1016/j.powtec.2009.11.022.
DOI: 10.1016/j.powtec.2009.11.022
Google Scholar
[24]
Q. Mu, Y. Wang, A simple method to prepare Ln(OH)3 (Ln = La, Sm, Tb, Eu, and Gd) nanorods using CTAB micelle solution and their room temperature photoluminescence properties, J. Alloys Compd. 509 (2011) 2060–2065. https://doi.org/10.1016/j.jallcom.2010.10.141.
DOI: 10.1016/j.jallcom.2010.10.141
Google Scholar