[1]
C.-S. Chae, H.-P. Le, K.-C. Lee, G.-H. Cho, G.-H. Cho, A single-inductor step-up DC-DC switching converter with bipolar outputs for active matrix OLED mobile display panels, IEEE Journal of Solid-State Circuits 44 (2009) 509-524.
DOI: 10.1109/jssc.2008.2010986
Google Scholar
[2]
F. So, J. Kido, P. Burrows, Organic light-emitting devices for solid-state lighting, MRS bulletin 33 (2008) 663-669.
DOI: 10.1557/mrs2008.137
Google Scholar
[3]
A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, M. Tsuchida, Flexible OLED displays using plastic substrates, IEEE Journal of selected topics in quantum electronics 10 (2004) 107-114.
DOI: 10.1109/jstqe.2004.824112
Google Scholar
[4]
X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, Very-low-operating-voltage organic light-emitting diodes using AP-doped amorphous hole injection layer, Applied Physics Letters 78 (2001) 410-412.
DOI: 10.1063/1.1343849
Google Scholar
[5]
H. Sasabe, J. Kido, Development of high performance OLEDs for general lighting, Journal of Materials Chemistry C 1 (2013) 1699-1707.
Google Scholar
[6]
H. Kanno, Y. Hamada, H. Takahashi, Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays, IEEE journal of selected topics in quantum electronics 10 (2004) 30-36.
DOI: 10.1109/jstqe.2004.824076
Google Scholar
[7]
S.-H. Chen, Y.-R. Li, C.-F. Yu, C.-F. Lin, P.-C. Kao, Enhanced luminescence efficiency of Ag nanoparticles dispersed on indium tin oxide for polymer light-emitting diodes, Optics Express 21 (2013) 26236-26243.
DOI: 10.1364/oe.21.026236
Google Scholar
[8]
Y.Y. Kim, W.J. Hyun, K.H. Park, Y.G. Lee, J. Lee, O.O. Park, Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process, Journal of Materials Chemistry C 4 (2016) 10445-10452.
DOI: 10.1039/c6tc02812h
Google Scholar
[9]
C.M. Cobley, S.E. Skrabalak, D.J. Campbell, Y. Xia, Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications, Plasmonics 4 (2009) 171-179.
DOI: 10.1007/s11468-009-9088-0
Google Scholar
[10]
T. Endo, R. Ikeda, Y. Yanagida, T. Hatsuzawa, Stimuli-responsive hydrogel–silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor, Analytica chimica acta 611 (2008) 205-211.
DOI: 10.1016/j.aca.2008.01.078
Google Scholar
[11]
Y.-H. Tak, K.-B. Kim, H.-G. Park, K.-H. Lee, J.-R. Lee, Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode, Thin Solid Films 411 (2002) 12-16.
DOI: 10.1016/s0040-6090(02)00165-7
Google Scholar
[12]
W. Ji, H. Zhao, H. Yang, F. Zhu, Effect of coupling between excitons and gold nanoparticle surface plasmons on emission behavior of phosphorescent organic light-emitting diodes, Organic Electronics 22 (2015) 154-159.
DOI: 10.1016/j.orgel.2015.03.053
Google Scholar
[13]
J. Hu, Y. Yu, B. Jiao, S. Ning, H. Dong, X. Hou, Z. Zhang, Z. Wu, Realizing improved performance of down-conversion white organic light-emitting diodes by localized surface plasmon resonance effect of Ag nanoparticles, Organic Electronics 31 (2016) 234-239.
DOI: 10.1016/j.orgel.2016.01.031
Google Scholar
[14]
L. Kibis, A. Stadnichenko, E. Pajetnov, S. Koscheev, V. Zaykovskii, A. Boronin, The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen, Applied Surface Science 257 (2010) 404-413.
DOI: 10.1016/j.apsusc.2010.07.002
Google Scholar
[15]
K. Li, F.-S. Zhang, A novel approach for preparing silver nanoparticles under electron beam irradiation, Journal of Nanoparticle Research 12 (2010) 1423-1428.
DOI: 10.1007/s11051-009-9690-2
Google Scholar
[16]
S.T. Park, T.-H. Kim, D.-W. Park, Influence of injected silver content on synthesis of silver coated nickel particles by DC thermal plasma, Applied Surface Science 374 (2016) 257-264.
DOI: 10.1016/j.apsusc.2015.11.242
Google Scholar
[17]
A. Stepanov, D. Hole, P. Townsend, Modification of size distribution of ion implanted silver nanoparticles in sodium silicate glass using laser and thermal annealing, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 149 (1999) 89-98.
DOI: 10.1016/s0168-583x(98)90733-9
Google Scholar
[18]
A.H.H. Al-Masoodi, N.F.F.B. Nazarudin, H. Nakajima, S. Tunmee, B.T. Goh, W.H.B.A. Majid, Controlled growth of silver nanoparticles on indium tin oxide substrates by plasma-assisted hot-filament evaporation: Physical properties, composition, and electronic structure, Thin Solid Films 693 (2020) 137686.
DOI: 10.1016/j.tsf.2019.137686
Google Scholar
[19]
D. Schinca, L. Scaffardi, F. Videla, G. Torchia, P. Moreno, L. Roso, Silver–silver oxide core–shell nanoparticles by femtosecond laser ablation: core and shell sizing by extinction spectroscopy, Journal of Physics D: Applied Physics 42 (2009) 215102.
DOI: 10.1088/0022-3727/42/21/215102
Google Scholar
[20]
Z. Huang, X. Zeng, X. Sun, E. Kang, J.Y. Fuh, L. Lu, Influence of plasma treatment of ITO surface on the growth and properties of hole transport layer and the device performance of OLEDs, Organic electronics 9 (2008) 51-62.
DOI: 10.1016/j.orgel.2007.08.002
Google Scholar
[21]
K.-P. Kim, A.M. Hussain, D.-K. Hwang, S.-H. Woo, H.-K. Lyu, S.-H. Baek, Y. Jang, J.-H. Kim, Work function modification of indium–tin oxide by surface plasma treatments using different gases, Japanese Journal of Applied Physics 48 (2009) 021601.
DOI: 10.1143/jjap.48.021601
Google Scholar
[22]
T. Maruyama, S. Arai, Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition, Journal of the Electrochemical Society 143 (1996) 1383-1386.
DOI: 10.1149/1.1836646
Google Scholar
[23]
A. Saroni, M. Alizadeh, S.A. Rahman, C.F. Dee, B.T. Goh, Composition and optical property controlled in In 2 O 3/W 2 N nanostructure composites by nitrogen plasma assisted in-situ thermal annealing, Materials Science in Semiconductor Processing 68 (2017) 6-14.
DOI: 10.1016/j.mssp.2017.05.030
Google Scholar
[24]
K. Chan, Z. Aspanut, B. Goh, M.R. Muhamad, S.A. Rahman, Formation of gold nanoparticles in silicon suboxide films prepared by plasma enhanced chemical vapour deposition, Thin solid films 519 (2011) 4952-4957.
DOI: 10.1016/j.tsf.2011.01.060
Google Scholar
[25]
U.K. Barik, S. Srinivasan, C. Nagendra, A. Subrahmanyam, Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen, Thin Solid Films 429 (2003) 129-134.
DOI: 10.1016/s0040-6090(03)00064-6
Google Scholar
[26]
R.B. Metz, C. Nicolas, M. Ahmed, S.R. Leone, Direct determination of the ionization energies of FeO and CuO with VUV radiation, The Journal of chemical physics 123 (2005) 114313.
DOI: 10.1063/1.2032947
Google Scholar
[27]
G. D'Avino, L. Muccioli, F. Castet, C. Poelking, D. Andrienko, Z.G. Soos, J. Cornil, D. Beljonne, Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics, Journal of Physics: Condensed Matter 28 (2016) 433002.
DOI: 10.1088/0953-8984/28/43/433002
Google Scholar
[28]
P.J. Jesuraj, K. Jeganathan, M. Navaneethan, Y. Hayakawa, Far-field and hole injection enhancement by noble metal nanoparticles in organic light emitting devices, Synthetic Metals 211 (2016) 155-160.
DOI: 10.1016/j.synthmet.2015.11.024
Google Scholar