Synthesis of Silver Nanoparticles by Plasma-Assisted Hot-Filament Evaporation for Enhancing in Luminescence Properties of Organic Light Emitting Diode

Article Preview

Abstract:

In this work, silver (Ag) nanoparticles were synthesized using plasma-assisted hot-filament evaporation, both with and without plasma deposition environments. This technique was used for the deposition of the nanoparticles in high-density, with controlling the size and interparticle separation. The size and interparticle separation acted as the primary factors of the variation of the localized surface plasmon resonance characteristics of the nanoparticles. The Ag nanoparticles reflected an additional layer in a typical organic light-emitting diode (OLED). The OLED with the Ag nanoparticles layer resulted in a low operating voltage, with a high luminance that reached 62.9 % under the hydrogen plasma environment, as compared to the reference device (OLED without the Ag nanoparticles layer). The effects of the Ag nanoparticles synthesis layer, both with and without plasma deposition on the OLED luminance, were also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

157-165

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.-S. Chae, H.-P. Le, K.-C. Lee, G.-H. Cho, G.-H. Cho, A single-inductor step-up DC-DC switching converter with bipolar outputs for active matrix OLED mobile display panels, IEEE Journal of Solid-State Circuits 44 (2009) 509-524.

DOI: 10.1109/jssc.2008.2010986

Google Scholar

[2] F. So, J. Kido, P. Burrows, Organic light-emitting devices for solid-state lighting, MRS bulletin 33 (2008) 663-669.

DOI: 10.1557/mrs2008.137

Google Scholar

[3] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, M. Tsuchida, Flexible OLED displays using plastic substrates, IEEE Journal of selected topics in quantum electronics 10 (2004) 107-114.

DOI: 10.1109/jstqe.2004.824112

Google Scholar

[4] X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, K. Leo, Very-low-operating-voltage organic light-emitting diodes using AP-doped amorphous hole injection layer, Applied Physics Letters 78 (2001) 410-412.

DOI: 10.1063/1.1343849

Google Scholar

[5] H. Sasabe, J. Kido, Development of high performance OLEDs for general lighting, Journal of Materials Chemistry C 1 (2013) 1699-1707.

Google Scholar

[6] H. Kanno, Y. Hamada, H. Takahashi, Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays, IEEE journal of selected topics in quantum electronics 10 (2004) 30-36.

DOI: 10.1109/jstqe.2004.824076

Google Scholar

[7] S.-H. Chen, Y.-R. Li, C.-F. Yu, C.-F. Lin, P.-C. Kao, Enhanced luminescence efficiency of Ag nanoparticles dispersed on indium tin oxide for polymer light-emitting diodes, Optics Express 21 (2013) 26236-26243.

DOI: 10.1364/oe.21.026236

Google Scholar

[8] Y.Y. Kim, W.J. Hyun, K.H. Park, Y.G. Lee, J. Lee, O.O. Park, Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process, Journal of Materials Chemistry C 4 (2016) 10445-10452.

DOI: 10.1039/c6tc02812h

Google Scholar

[9] C.M. Cobley, S.E. Skrabalak, D.J. Campbell, Y. Xia, Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications, Plasmonics 4 (2009) 171-179.

DOI: 10.1007/s11468-009-9088-0

Google Scholar

[10] T. Endo, R. Ikeda, Y. Yanagida, T. Hatsuzawa, Stimuli-responsive hydrogel–silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor, Analytica chimica acta 611 (2008) 205-211.

DOI: 10.1016/j.aca.2008.01.078

Google Scholar

[11] Y.-H. Tak, K.-B. Kim, H.-G. Park, K.-H. Lee, J.-R. Lee, Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode, Thin Solid Films 411 (2002) 12-16.

DOI: 10.1016/s0040-6090(02)00165-7

Google Scholar

[12] W. Ji, H. Zhao, H. Yang, F. Zhu, Effect of coupling between excitons and gold nanoparticle surface plasmons on emission behavior of phosphorescent organic light-emitting diodes, Organic Electronics 22 (2015) 154-159.

DOI: 10.1016/j.orgel.2015.03.053

Google Scholar

[13] J. Hu, Y. Yu, B. Jiao, S. Ning, H. Dong, X. Hou, Z. Zhang, Z. Wu, Realizing improved performance of down-conversion white organic light-emitting diodes by localized surface plasmon resonance effect of Ag nanoparticles, Organic Electronics 31 (2016) 234-239.

DOI: 10.1016/j.orgel.2016.01.031

Google Scholar

[14] L. Kibis, A. Stadnichenko, E. Pajetnov, S. Koscheev, V. Zaykovskii, A. Boronin, The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen, Applied Surface Science 257 (2010) 404-413.

DOI: 10.1016/j.apsusc.2010.07.002

Google Scholar

[15] K. Li, F.-S. Zhang, A novel approach for preparing silver nanoparticles under electron beam irradiation, Journal of Nanoparticle Research 12 (2010) 1423-1428.

DOI: 10.1007/s11051-009-9690-2

Google Scholar

[16] S.T. Park, T.-H. Kim, D.-W. Park, Influence of injected silver content on synthesis of silver coated nickel particles by DC thermal plasma, Applied Surface Science 374 (2016) 257-264.

DOI: 10.1016/j.apsusc.2015.11.242

Google Scholar

[17] A. Stepanov, D. Hole, P. Townsend, Modification of size distribution of ion implanted silver nanoparticles in sodium silicate glass using laser and thermal annealing, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 149 (1999) 89-98.

DOI: 10.1016/s0168-583x(98)90733-9

Google Scholar

[18] A.H.H. Al-Masoodi, N.F.F.B. Nazarudin, H. Nakajima, S. Tunmee, B.T. Goh, W.H.B.A. Majid, Controlled growth of silver nanoparticles on indium tin oxide substrates by plasma-assisted hot-filament evaporation: Physical properties, composition, and electronic structure, Thin Solid Films 693 (2020) 137686.

DOI: 10.1016/j.tsf.2019.137686

Google Scholar

[19] D. Schinca, L. Scaffardi, F. Videla, G. Torchia, P. Moreno, L. Roso, Silver–silver oxide core–shell nanoparticles by femtosecond laser ablation: core and shell sizing by extinction spectroscopy, Journal of Physics D: Applied Physics 42 (2009) 215102.

DOI: 10.1088/0022-3727/42/21/215102

Google Scholar

[20] Z. Huang, X. Zeng, X. Sun, E. Kang, J.Y. Fuh, L. Lu, Influence of plasma treatment of ITO surface on the growth and properties of hole transport layer and the device performance of OLEDs, Organic electronics 9 (2008) 51-62.

DOI: 10.1016/j.orgel.2007.08.002

Google Scholar

[21] K.-P. Kim, A.M. Hussain, D.-K. Hwang, S.-H. Woo, H.-K. Lyu, S.-H. Baek, Y. Jang, J.-H. Kim, Work function modification of indium–tin oxide by surface plasma treatments using different gases, Japanese Journal of Applied Physics 48 (2009) 021601.

DOI: 10.1143/jjap.48.021601

Google Scholar

[22] T. Maruyama, S. Arai, Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition, Journal of the Electrochemical Society 143 (1996) 1383-1386.

DOI: 10.1149/1.1836646

Google Scholar

[23] A. Saroni, M. Alizadeh, S.A. Rahman, C.F. Dee, B.T. Goh, Composition and optical property controlled in In 2 O 3/W 2 N nanostructure composites by nitrogen plasma assisted in-situ thermal annealing, Materials Science in Semiconductor Processing 68 (2017) 6-14.

DOI: 10.1016/j.mssp.2017.05.030

Google Scholar

[24] K. Chan, Z. Aspanut, B. Goh, M.R. Muhamad, S.A. Rahman, Formation of gold nanoparticles in silicon suboxide films prepared by plasma enhanced chemical vapour deposition, Thin solid films 519 (2011) 4952-4957.

DOI: 10.1016/j.tsf.2011.01.060

Google Scholar

[25] U.K. Barik, S. Srinivasan, C. Nagendra, A. Subrahmanyam, Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen, Thin Solid Films 429 (2003) 129-134.

DOI: 10.1016/s0040-6090(03)00064-6

Google Scholar

[26] R.B. Metz, C. Nicolas, M. Ahmed, S.R. Leone, Direct determination of the ionization energies of FeO and CuO with VUV radiation, The Journal of chemical physics 123 (2005) 114313.

DOI: 10.1063/1.2032947

Google Scholar

[27] G. D'Avino, L. Muccioli, F. Castet, C. Poelking, D. Andrienko, Z.G. Soos, J. Cornil, D. Beljonne, Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics, Journal of Physics: Condensed Matter 28 (2016) 433002.

DOI: 10.1088/0953-8984/28/43/433002

Google Scholar

[28] P.J. Jesuraj, K. Jeganathan, M. Navaneethan, Y. Hayakawa, Far-field and hole injection enhancement by noble metal nanoparticles in organic light emitting devices, Synthetic Metals 211 (2016) 155-160.

DOI: 10.1016/j.synthmet.2015.11.024

Google Scholar