[1]
Information on www.europeanbioplastic.org.
Google Scholar
[2]
Information on http://www.wwf.org.my.
Google Scholar
[3]
European Commission, Plastic waste: Ecological and human health impacts. Science for Environment Policy, D G Environment New Alert Services In-Depth Report Nov (2011).
Google Scholar
[4]
Information on http://plasticpollutioncoalition.org.
Google Scholar
[5]
A. Krzan, Biodegradable Polymers and Plastic, Innovative value Chain Development for Sustainable Plastics in Central Europe (PLASTiCE) (2012).
Google Scholar
[6]
Y.J. Chen, Bioplastic and their role in achieving global sustainability, Journal of Chemical and Pharmaceutical Research 6(1) (2014) 0975-7384.
Google Scholar
[7]
R. Coles, M. Kay, J. Song, Food and Beverage Packaging Technology, Second ed., Wiley-Blackwell, (2011).
Google Scholar
[8]
V.M. Azevedoa, S.V. Borges, J.M. Marconcini, M.I. Yoshida, A.R.S. Neto, T.C. Pereira, C.F.G. Pereira, Effect of replacement of corn starch by whey protein isolate inbiodegradable film blends obtained by extrusion, Carbohydrate Polymers 157 (2017) 971–980.
DOI: 10.1016/j.carbpol.2016.10.046
Google Scholar
[9]
S.S. Shafik, K.J. Majeed, M.I. Kamil, Preparation of PVA/Corn Starch Blend Films and Studying the Influence of Gamma Irradiation on Mechanical Properties, International Journal of Materials Science and Applications 3 (2014) 25-28.
Google Scholar
[10]
B. Khan, M.B.K. Niazi, G. Samin, Z. Jahan, Thermoplastic Starch: A Possible Biodegradable Food Packaging Material—A Review, Journal of Food Process Engineering (2016) 1745–4530.
DOI: 10.1111/jfpe.12447
Google Scholar
[11]
R. Bhat, A.A. Karim, Impact of Radiation Processing on Starch, Comprehensive Reviews In Food Science And Food Safety 8 (2009) 44-58.
DOI: 10.1111/j.1541-4337.2008.00066.x
Google Scholar
[12]
R.V. Gadhave, A. Das, P.A. Mahanwar, P.T. Gadekar, Starch Based Bio-Plastics: The Future of Sustainable Packaging, Open Journal of Polymer Chemistry 8 (2018) 21-33.
DOI: 10.4236/ojpchem.2018.82003
Google Scholar
[13]
S.H. Othman, N.A. Majid, I.S.M.A. Tawakkal, R.K. Basha, N. Nordin, R.A. Shapi'i, Tapioca starch films reinforced with microcrystalline cellulose for potential food packaging application, Food Science and Technology 39 (2019) 605-612.
DOI: 10.1590/fst.36017
Google Scholar
[14]
Z. Sedlacekova, Food Packaging Materials: Comparison of Materials Used for Packaging Purposes, Bachelor Thesis, Helsinki Metropolia University of Applied Sciences, (2017).
Google Scholar
[15]
J. Shin, S.E.M. Selke, Food Packaging, in: S. Clark, S. Jung, B. Lamsal, (second ed.), Food Processing: Principles and Applications, Wiley Blackwell, 2014, pp.249-274.
Google Scholar
[16]
P. Mahat, Feasibility Study: Bio-based Biodegradable Thermal Pallet Covers (BBTPC), Bachelor Thesis, Helsinki Metropolia University of Applied Sciences, (2017).
Google Scholar
[17]
M. Lackner, Bioplastics- Bio-based Plastics as renewable and/or biodegradable alternative or petroplastic, International Journal of Biobased Plastics (2015).
Google Scholar
[18]
M.V.D. Oever, K. Molenveld, M.V.D Zee, H. Bos. Bio-based and biodegradable plastics - Facts and Figures, Wageningen Food & Biobased Research (2017).
DOI: 10.18174/408350
Google Scholar
[19]
A. Jones, A. Mandal, S. Sharma, Protein based bioplastic and their antibacterial potential, Journal of Applied Polymer Science 132(18) (2015).
Google Scholar
[20]
S. Basnet, Production of Polylactic Acid in Laboratory Scale, and Characterizing The Thermal Properties, Material Processing Technology : Arcada (2016).
Google Scholar
[21]
T.Z. Abolibda, Physical and chemical investigations of starch based bioplastics, University of Leicester in Material Science, (2015).
Google Scholar
[22]
M. Elbay, E.T. Tugba, K. Aysel, V. Hasirci, N. Hasirci, PCL and PCL-based materials in biomedical application, Journal of Biomaterials Science, Polymer Edition 29 (2018) 863-893.
DOI: 10.1080/09205063.2017.1394711
Google Scholar
[23]
Information on http://www.plasticstoday.com.
Google Scholar
[24]
H.E. Ali, A.M. Ghaffar, Preparation and Effect of Gamma Radiation on The Properties and Biodegradability of Poly(Styrene/Starch) Blends, Radiation Physics and Chemistry Journal 130 (2017) 411– 420.
DOI: 10.1016/j.radphyschem.2016.09.006
Google Scholar
[25]
J. Muller, C. González-Martínez, A. Chiralt, Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging, Material MDPI Journal, Materials 10 (2017).
DOI: 10.3390/ma10080952
Google Scholar
[26]
R. Thakur, P. Pristijono, C.J. Scarlett, M. Bowyer, Starch based film: Major factors affecting their properties, International Journal of Biological Macromolecules 132 (2019) 1079-1089.
DOI: 10.1016/j.ijbiomac.2019.03.190
Google Scholar
[27]
E. Basiak, A. Lenart, F. Debeaufort, Effect of starch type on the physico-chemical properties of edible films, International Journal of Biological Macromolecules, 98 (2017) 348-356.
DOI: 10.1016/j.ijbiomac.2017.01.122
Google Scholar
[28]
V.S. Keziah, R. Gayathri, V.V. Priya, Biodegradable plastic production from corn starch, Drug Invention Today 10(7) (2018).
Google Scholar
[29]
M. Gaspar, Zs. Benko, G. Dogossy, K. Reczey, T. Czigany, Reducing water absorption in compostable starch-based plastics, Polymer Degradation and Stability 90 (2005) 563-569.
DOI: 10.1016/j.polymdegradstab.2005.03.012
Google Scholar
[30]
T. Mekonnen, P. Mussone, H. Khalil, D. Bressler, Progress in bio-based plastics and plasticizing modifications, Journal of Materials Chemistry A. J. Mater. Chem. A 1 (2013) 13379–13398.
DOI: 10.1039/c3ta12555f
Google Scholar
[31]
M.K. Marichelvam, M. Jawaid, M. Asim, Corn and rice starch based bioplastic as alternative packaging material, Fibers 7 (2019) 32.
DOI: 10.3390/fib7040032
Google Scholar
[32]
M.L. Sanyang, S.M. Sapuan, M. Jawaid, M.R. Ishak, J. Sahari, Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch, Polymers 7 (2015) 1106-1124.
DOI: 10.3390/polym7061106
Google Scholar
[33]
S. Gujar, B. Pandel, A. S. Jethoo, Effect of Plasticizer on Mechanical and Moisture Absorption Properties of Eco-friendly Corn Starch-based Bioplastic, Nature Environment and Pollution Technology An International Quarterly Scientific Journal 13 (2) (2014) 435-428.
Google Scholar
[34]
M.A. Bertuzzi, J.C. Gottifredi, M. Armada, Mechanical properties of a high amylose content corn starch based film, gelatinized at low temperature, Brazilian Journal of Food Techanology Campinas 15 (3) (2012) 219-227.
DOI: 10.1590/s1981-67232012005000015
Google Scholar
[35]
A.M. Nafchi, M. Moradpour, M. Saeidi, A.K. Alias, Thermoplastic starches: Properties, challenges and prospects, Starch/Starke 65 (2013) 61–72.
DOI: 10.1002/star.201200201
Google Scholar
[36]
T. Nicholas, L. Sheldon, Measurement and detection of radiation, Third Ed., United State, America, (2011).
Google Scholar
[37]
S.A.S. Khalil, Effect of ionizing radiation on the properties of prepared plastic/starch blends and their applications as biodegradable materials, National Center For Radiation Research And Technology Atomic Energy Authority (2010).
Google Scholar
[38]
A.J.C. Brant, N. Naime, A.B. Lugão, P. Ponce, Influence of Ionizing Radiation on Biodegradable Foam Trays for Food Packaging Obtained from Irradiated Cassava Starch, Brazilian Archives of Biology And Technology An International Journal 61 (2018).
DOI: 10.1590/1678-4324-2018160520
Google Scholar
[39]
S.S.A. Asyraf, A. Zuraida, A. Azura, T. Maisarah, Effect Gamma Irradiation on Starch-Based Biomaterials Composites for Wound Healing, International Medical Device and Technology Conference (2017).
Google Scholar
[40]
H. Tang, H. Jiang, B. Guo, P. Li, Effect of Co60γ Ray Irradiation on Thermoplastic Corn Starch Plastic, Advanced Materials Research Online 772 (2013) 34-37.
DOI: 10.4028/www.scientific.net/amr.772.34
Google Scholar
[41]
A. Abramowska, K.A. Cieœla, M.J. Buczkowski, A. Nowicki, W. Guszewski, The influence of ionizing radiation on the properties of starch-PVA films, NUKLEONIKA 60(3) (2015) 669-677.
DOI: 10.1515/nuka-2015-0088
Google Scholar
[42]
A.N.R. Kollengode, S. Bhatnagar, M.A. Hanna, 60Co Radiation Effect on Copolymers of Starch and Plastics, Engineering and Processing. Publication no. C-1996-0801-05R.1996 American Association of Cereal Chemists, Inc. 73(5) (1996) 539.
Google Scholar
[43]
E.A. Soliman, M.S.M. Eldin, M.Furuta, Biodegradable Zein-Based Films: Influence of Gamma Irradiation on Structural and Functional Properties, Journal Agricultural Food Chemistry 57 (2009) 2529–2535.
DOI: 10.1021/jf8032599
Google Scholar
[44]
European bioplastic, Bioplastic market data 2017, Report European Bioplastic, nova-Institue, www.bio-based.eu/markets (2017).
Google Scholar
[45]
N.N. Nasir, S.A. Othman, Effect of radiation treatment on starch based bioplastic- A review, International Journal of Advancement in Life Science Research 2(4) (2019) 01-07.
Google Scholar
[46]
S. Thompson, Are biologically based plastic a realistic replacement for petrochemical plastic, The Irish Times (2018).
Google Scholar
[47]
Information on www.fda.gov.
Google Scholar