Rapid Adsorption of Magnetite Nanoparticles from Recycled Mill Scale Waste as Potential Adsorbent for Removal of Cu(II) Ions

Article Preview

Abstract:

The present study was conducted to establish adsorbent potential of magnetite nanoparticle ferrous ferric oxide (Fe3O4) for removal of Cu(ll) ions in wastewater. In the study, Fe3O4 was prepared by synthesizing low-cost recycled mill scale waste in an aqueous solution. Samples of scale wastes were milled and ground using high-energy ball milling (HEBM) at three milling times of 5, 7 and 9 hours. Extraction of Fe3O4 was accomplished by magnetic separation technique (MST) and Curie temperature separation technique (CTST). The morphologies and structural properties of Fe3O4 were characterized by using X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Fourier-transform infrared spectroscopy (FTIR). HRTEM yielded images in the range of 10-22 nm. Maximum adsorption capacity, qe, and percentage removal of Cu(II) ions were achieved at 4.45 mg/g and 62.61% respectively after 7 hours of milling time. The present study recorded the smallest particle size of Fe3O4 imparting high qe, and percentage removal of Cu (II) ion in an aqueous solution, suggesting its high adsorbent potential.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

270-275

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhang, Y. Shao, C.T. Hsieh, Y.F. Chen, T.C. Su, J.P. Hsu, R.S. Juang, Synthesis of magnetic iron oxide nanoparticles onto fluorinated carbon fabrics for contaminant removal and oil-water separation, Separation and Purification Technology 174 (2017) 312-319.

DOI: 10.1016/j.seppur.2016.11.006

Google Scholar

[2] Information on https://www.who.int/news-room/fact-sheets/detail/drinking-water.

Google Scholar

[3] N.K. Srivastava, C.B. Majumder, Novel biofiltration methods for the treatment of heavy metals from industrial wastewater, Journal of hazardous materials 151(1) (2008) 1-8.

DOI: 10.1016/j.jhazmat.2007.09.101

Google Scholar

[4] C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review, Journal of Environmental Chemical Engineering 5(3) (2017) 2782-2799.

DOI: 10.1016/j.jece.2017.05.029

Google Scholar

[5] W.R. Cai, Y.Q. Chen, Y. Liu, X. Jin, Y.Q. Deng, Y.Z. Zhang, J. Zhang, H. Yan, W.L. Gao, J. Mei, W.M. Lau, Fabrication of copper electrode on flexible substrate through Ag+-based inkjet printing and rapid electroless metallization, IEEE Transactions on Components, Packaging and Manufacturing Technology 7(9) (2017) 1552-1559.

DOI: 10.1109/tcpmt.2017.2730483

Google Scholar

[6] J. Yang, S. Li, Y. Gong, C. He, Q. Zhang, J. Wu, W. Lio, D. Shu, S. Tian, Preferential catalytic ozonation of p-nitrophenol by molecularly imprinted Fe3O4/SiO2 core-shell magnetic composites, Water science and technology 69(1) (2014) 170-176.

DOI: 10.2166/wst.2013.629

Google Scholar

[7] M.F. Li, Y.G. Liu, S.B. Liu, D. Shu, G. M. Zeng, X.J. Hu, X.F. Tan, L.H. Jiang, Z.L. Yan, X.X. Cai, Cu(II)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanism, Chem. Eng. J. 319 (2017) 219-28.

DOI: 10.1016/j.cej.2017.03.016

Google Scholar

[8] V.K. Gupta, S. Agarwal, A.K. Bharti, H. Sadegh, Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal, Journal of Molecular Liquids 230 (2017) 667-673.

DOI: 10.1016/j.molliq.2017.01.083

Google Scholar

[9] M.B. Gumpu, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan, A review on detection of heavy metal ions in water–an electrochemical approach, Sensors and Actuators B: Chemical 213 (2015) 515-533.

DOI: 10.1016/j.snb.2015.02.122

Google Scholar

[10] R. Chen, L. Chai, Q. Li, Y. Shi, Y. Wang, A. Mohammad, Preparation and characterization of magnetic Fe 3 O 4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr (VI), Environmental Science and Pollution Research 20(10) (2013) 7175-7185.

DOI: 10.1007/s11356-013-1671-4

Google Scholar

[11] K.K. Kefeni, T.A. Msagati, B.B. Mamba, Ferrite nanoparticles: synthesis, characterisation and applications in electronic device, Materials Science and Engineering: B 215 (2017) 37-55.

DOI: 10.1016/j.mseb.2016.11.002

Google Scholar

[12] R.A.S. Azis, M. Hashim, N.M. Saiden, N. Daud, N.M.M. Shahrani, Study the iron environments of the steel waste product and its possible potential applications in ferrites, Advanced Materials Research 1109 (2015) 295-299.

DOI: 10.4028/www.scientific.net/amr.1109.295

Google Scholar

[13] N. Daud, R.S. Azis, M. Hashim, K.A. Matori, J. Hassan, N.M. Saiden, N.M.M. Shahrani, Preparation and characterization of Sr1− xNdxFe12O19 derived from steelwaste product via mechanical alloying, Materials Science Forum 846 (2015) 403-409.

DOI: 10.4028/www.scientific.net/msf.846.403

Google Scholar

[14] N. Rosdi, M.S. Mustaffa, N.H. Abdullah, S. Sulaiman, T.T. Ling, Synthesis and characterization of Mg–Ti substituted barium hexaferrite (BaMg 0.6 Ti 0.6 Fe 10.8 O 19 ) derived from millscale waste for microwave application, Journal of Materials Science: Materials in Electronics (2019) 8636-8644.

DOI: 10.1007/s10854-019-01186-3

Google Scholar

[15] S. Sulaiman, R.S. Azis, I. Ismail, H.C. Man, N.A.A. Nazri, Adsorption potential of magnetite nanoparticles for copper removal from aqueous solution, International Journal of Innovative Technology and Exploring Engineering (IJITEE) 1 (2019) 5424.

DOI: 10.35940/ijitee.a8101.119119

Google Scholar

[16] P.L. King, M.S. Ramsey, P.F. McMillan, G. Swayze, Laboratory fourier transform infrared spectroscopy methods for geologic samples, in: P. King, M. Ramsey, G. Swayze (eds.), Infrared Spectroscopy in Geochemistry, Exploration, and Remote Sensing, Mineral. Assoc. of Canada, London, ON, 33, 2004, pp.57-91.

DOI: 10.2113/gsecongeo.100.8.1663-a

Google Scholar

[17] N.A.A. Nazri, R.S. Azis, H.C. Man, I. Ismail, I.R. Ibrahim, Extraction of Magnetite from millscale, International Journal of Engineering and Advanced Technology (IJEAT) 9 (1) (2019) 5902.

Google Scholar

[18] J.M. Cohen, J. Beltran-Huarac, G. Pyrgiotakis, P. Demokritou, Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: Implications for stability, particle kinetics, dosimetry and toxicity, NanoImpact. 10 (2018) 81-86.

DOI: 10.1016/j.impact.2017.12.002

Google Scholar

[19] E. Rahmawati, A. Taufiq, S. Sunaryono, A. Fuad, B. Yuliarto, S. Suyatman, D. Kurniadi, Synthesis of magnetite (Fe3O4) nanoparticles from iron sands by coprecipitation-ultrasonic irradiation methods, J. Mater. Environ. Sci. 9(3) (2018) 155-160.

DOI: 10.26872/jmes.2018.9.1.19

Google Scholar

[20] R. Reza, C.M. Pérez, C.R. González, H. Romero, P.G. Casillas, Effect of the polymeric coating over Fe3O4 particles used for magnetic separation, Open Chemistry 8(5) (2014) 1041-1046.

DOI: 10.2478/s11532-010-0073-4

Google Scholar

[21] M.T. Shah, E. Alveroglu, Synthesis and characterization of magnetite nanoparticles having different cover layer and investigation of cover layer effect on the adsorption of lysozyme and bovine serum albumin, Materials Science and Engineering: C 81 (2017) 393-399.

DOI: 10.1016/j.msec.2017.08.033

Google Scholar

[22] E. Alveroğlu, H. Sözeri, A. Baykal, U. Kurtan, M. Şenel, Fluorescence and magnetic properties of hydrogels containing Fe3O4 nanoparticles, Journal of Molecular Structure 1037 (2013) 361-366.

DOI: 10.1016/j.molstruc.2013.01.017

Google Scholar