[1]
L. S. Mahmud, A. Muchtar, M. R. Somalu, Challenges in fabricating planar solid oxide fuel cells: A Review, Renewable and Sustainable Energy Reviews 72 (2017) 105–116.
DOI: 10.1016/j.rser.2017.01.019
Google Scholar
[2]
J. Fergus, Solid Oxide Fuel Cells: Materials Properties and Performance, CRC Press, (2016).
Google Scholar
[3]
S. Horoz, O. Sahin, Solid Oxides, in: D. Ibrahim (ed.), Comprehensive Energy Systems, Elsevier Inc., United States, 2018, pp.593-628.
DOI: 10.1016/b978-0-12-809597-3.00242-x
Google Scholar
[4]
N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: A Review, Progress in Materials Science 72 (2015) 141–337.
DOI: 10.1016/j.pmatsci.2015.01.001
Google Scholar
[5]
C.O. Colpan, Y. Nalbant, M. Ercelik, Fundamentals of Fuel Cell Technologies, in: D. Ibrahim (ed.), Comprehensive Energy System, Elsevier Inc., United States, 2018, p.1107–1130.
DOI: 10.1016/b978-0-12-809597-3.00446-6
Google Scholar
[6]
T.D. Singh, B. Sreenivasulu, I. Sreedhar, A Review on Solid Oxide Fuel Cell-A Key to Noise-Free Power Generation, In National conference on Innovation in Chemical Engineering 15 (2013) 16.
Google Scholar
[7]
T. E. Lipman, A. Z. Weber, Fuel cells and hydrogen production: A volume in the Encyclopedia of sustainablility science and technology, Springer, (2019).
Google Scholar
[8]
A. Pandey, Progress in Solid Oxide Fuel Cell (SOFC) Research, JOM, 71 (2019) 88–89.
DOI: 10.1007/s11837-018-3218-0
Google Scholar
[9]
H.J Ko, J.H. Myung, J.H. Lee, S.H. Hyun, J.S. Chung, Synthesis and evaluation of (La0.6Sr0.4)(Co0.2Fe0.8)O3 (LSCF)-Y0.08Zr0.92O1.96 (YSZ)-Gd0.1Ce0.9O2-δ (GDC) dual composite SOFC cathodes for high performance and durability, International Journal of Hydrogen Energy 37 (2012) 17209–17216.
DOI: 10.1016/j.ijhydene.2012.08.099
Google Scholar
[10]
L.S. Mahmud, A. Muchtar, M.R. Somalu, Challenges in Fabricating Planar Solid Oxide Fuel Cells: A Review, Renewable and Sustainable Energy Reviews 72 (2017) 105–116.
DOI: 10.1016/j.rser.2017.01.019
Google Scholar
[11]
Y.A. Qin, Composite Cathode Materials Development for Intermediate Temperature Solid Oxide Fuel Cell Systems, Doctor of Philosophy Thesis, University of California, Irvine, (2008).
Google Scholar
[12]
H.J. Ko, J.H. Myung, S. H. Hyun, J.S. Chung, Synthesis of LSM – YSZ – GDC dual composite SOFC cathodes for high- performance power-generation systems, Journal of Applied Electrochemistry 42 (2012) 209-215.
DOI: 10.1007/s10800-012-0390-8
Google Scholar
[13]
L. Agun, H.A. Rahman, S. Ahmad, A. Muchtar, Durability and stability of LSCF composite cathode for intermediate-low temperature of solid oxide fuel cell (IT-LT SOFC): Short Review, Advanced Materials Research 893 (2014) 732-737.
DOI: 10.4028/www.scientific.net/amr.893.732
Google Scholar
[14]
M.A. Jayan, S.S. Dawn, G.V. Kumar, Nano-structured manganese promoted ferrous catalyst synthesized by incipient wetness impregnation method: Synthesis and characterization, Materials Letters 240 (2019) 55–58.
DOI: 10.1016/j.matlet.2018.12.115
Google Scholar
[15]
R. Nagarjuna, S. Roy, R. Ganesan, Polymerizable sol-gel precursor mediated synthesis of TiO2 supported zeolite-4A and its photodegradation of methylene blue, Microporous and Mesoporous Material 211 (2015) 1–8.
DOI: 10.1016/j.micromeso.2015.02.044
Google Scholar
[16]
P. Li, B. Yu, J. Li, X. Yao, Y. Zhao, Y. Li, A single layer solid oxide fuel cell composed of La2NiO4 and doped ceria-carbonate with H2 and methanol as fuels, International Journal of Hydrogen Energy 41 (2016) 9059–9065.
DOI: 10.1016/j.ijhydene.2016.03.167
Google Scholar
[17]
L. Fan, B. Zhu, P.C Su, C. He, Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities, Nano Energy 45 (2018) 148–176.
DOI: 10.1016/j.nanoen.2017.12.044
Google Scholar
[18]
R. Datt, S. Bishnoi, R. Gupta, D. Haranath, S.N. Sharma, G. Gupta, S. Arya, S. Kumar, V. Gupta, Dual functional cathode buffer layer for power conversion efficiency enhancement of bulk heterojunction solar cells, Synthetic Metals 255 (2019) 116112.
DOI: 10.1016/j.synthmet.2019.116112
Google Scholar
[19]
M. Kakihana, M. Yoshimura, Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method, Bulletin of the Chemical Society of Japan 72 (1999) 1427-1443.
DOI: 10.1246/bcsj.72.1427
Google Scholar
[20]
F. Li, L. Jiang, R. Zeng, T. Wei, F. Wang, Y. Xu, Y. Huang, One-pot synthesized hetero-structured Ca3co2O6/La0.6Ca0.4CoO3 dual-phase composite cathode materials for solid-oxide fuel cells, International Journal of Hydrogen Energy 40 (2015) 12750–12760.
DOI: 10.1016/j.ijhydene.2015.07.104
Google Scholar
[21]
S. Kim, A. Jun, O. Kwon, J. Kim, S. Yoo, H.Y. Jeong, J. Shin, G. Kim, Nanostructured double perovskite cathode with low sintering temperature for intermediate temperature solid oxide fuel cells, ChemSusChem 8 (2015) 3153-3158.
DOI: 10.1002/cssc.201500509
Google Scholar