The Effect of Ammonium Bromide on Methylcellulose Biopolymer Electrolytes for Electrical Studies

Article Preview

Abstract:

The development of biopolymer electrolytes based on methylcellulose (MC) has been accomplished by incorporating ammonium bromide (NB) to the polymer-salt system. The biopolymer electrolytes were prepared via solution-casting method. The conductivity and permittivity characteristics of the material were studied. The biopolymer-salt complex formation have been analysed through Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The conductivity of the sample was measured by EIS HIOKI. Upon addition of 20 wt.% of NB, highest conductivity of 3.25×10-4 μScm-1 was achieved at ambient temperature. The temperature dependence of the biopolymer electrolytes exhibit Arrhenius behaviour. This result had been further proven in FTIR study.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

426-433

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nature Energy 1 (2016) 16030.

DOI: 10.1038/nenergy.2016.30

Google Scholar

[2] Xue, Z., D. He, X. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries, Journal of Materials Chemistry A 3 (2015) 19218-19253.

DOI: 10.1039/c5ta03471j

Google Scholar

[3] A. Samsudin, W.M. Khairul, M. Isa, Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes, Journal of Non-crystalline Solids 358 (2012) 1104-1112.

DOI: 10.1016/j.jnoncrysol.2012.02.004

Google Scholar

[4] N.I. Harun, R.M. Ali, A.M.M. Ali, M.Z.A. Yahya, Dielectric behaviour of cellulose acetate-based polymer electrolytes, Ionics 18 (2012) 599-606.

DOI: 10.1007/s11581-011-0653-0

Google Scholar

[5] N.A.N. Aziz, N.K. Idris, M.I.N. Isa, Proton conducting polymer electrolytes of methycellulose doped ammonium fluoride: Conductivity and ionic transport studies, International Journal of the Physical Science 5(6) (2010) 748-752.

Google Scholar

[6] X.H. Flora, M. Ulaganathan, S. Rajendran, Influence of lithium salt concentration on PAN-PMMA blend polymer electrolytes, Int. J. Electrochem. Sci. 7 (2012) 7451-7462.

Google Scholar

[7] M.N. Hafiza, M.I.N. Isa, Ionic conductivity and conduction mechanism studies of CMC/chitosan biopolymer blend electrolytes, Research Journal of Recent Sciences 3(11) (2014) 50-56.

Google Scholar

[8] M.A. Ramlli, M.I.N. Isa, Conductivity study of carboxyl methyl cellulose solid biopolymer electrolytes (SBE) doped with ammonium fluoride, Research Journal of Recent Sciences 3(6) (2014) 59-66.

Google Scholar

[9] S.S. Alias, A.A. Mohamad, Effect of NH4I and I2 concentration on agar gel polymer electrolyte properties for a dye-sensitized solar cell, Ionics 19 (2013) 1185-1194.

DOI: 10.1007/s11581-012-0840-7

Google Scholar

[10] W. Wang, X. Guo, Y. Yang, Lithium iodide effect on the electrochemical behavior of agarose based polymer electrolyte for dye-sensitized solar cell, Electrochimica Acta 56 (2011) 7347-7351.

DOI: 10.1016/j.electacta.2011.06.032

Google Scholar

[11] Y. Yang, H. Hu, Z. Cong-Hua, S. Xu, B. Sebo, Z. Xing-Zhong, Novel agarose polymer electrolyte for quasi-solid state dye-sensitized solar cell, Journal of Power Sources 196 (2011) 2410-2415.

DOI: 10.1016/j.jpowsour.2010.10.067

Google Scholar

[12] K. Sankar, R. Rajasekaran, V. Vetrivelan, Synthesis, Growth and Characterization of Glycine Ammonium Bromide: A potential NLO material, Materials Today: Proceedings 8 (2019) 332-336.

DOI: 10.1016/j.matpr.2019.02.119

Google Scholar

[13] P. Geetha, S. Krishnan, S. Jeromdas, V.Chithambaram, Growth and characterization of urea ammonium bromide nonlinear optical single crystals by slow evaporation technique, Optik 126(23) (2015) 3962-3964.

DOI: 10.1016/j.ijleo.2015.07.181

Google Scholar

[14] A.M.S. Nurhaziqah, I.Q. Afiqah, M.F.H. Abd. Aziz, N.A. Nik Aziz, S. Hasiah, Optical, structural and electrical studies of biopolymer electrolytes based on methylcellulose doped with Ca(NO3)2, IOP Conference Series: Materials Science and Engineering 440 (2018) 012034.

DOI: 10.1088/1757-899x/440/1/012034

Google Scholar

[15] F. Bella, N.N. Mobarak, F.N. Jumaah, A. Ahmad, From seaweeds to biopolymeric electrolytes for third generation solar cells: an intriguing approach, Electrochimica Acta 151 (2015) 306-311.

DOI: 10.1016/j.electacta.2014.11.058

Google Scholar

[16] R. Singh, B. Bhattacharya, R. Hee-Woo, P.K. Singh, New biodegradable polymer electrolyte for dye sensitized solar cell, Int. J. Electrochem. Sci. 9(5) (2014) 2620-2630.

Google Scholar

[17] S.B. Aziz, Z.H.Z. Abidin, Ion‐transport study in nanocomposite solid polymer electrolytes based on chitosan: Electrical and dielectric analysis, Journal of Applied Polymer Science (2015) 41774.

DOI: 10.1002/app.41774

Google Scholar

[18] N. Zebardastan, M.H. Khanmirzaei, S. Ramesh, K. Ramesh, Performance enhancement of poly (vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based nanocomposite polymer electrolyte with ZnO nanofiller for dye-sensitized solar cell, Organic Electronics 49 (2017) 292-299.

DOI: 10.1016/j.orgel.2017.06.062

Google Scholar

[19] E. Raphael, C.O. Avellaneda, B. Manzolli, A. Pawlicka, Agar-based films for application as polymer electrolytes, Electrochimica Acta 55 (2010) 1455-1459.

DOI: 10.1016/j.electacta.2009.06.010

Google Scholar

[20] Y. Ding, G. Yu, A Bio‐Inspired, Heavy‐Metal‐Free, Dual‐Electrolyte Liquid Battery towards Sustainable Energy Storage, Angewandte Chemie International Edition 55 (2016) 4772-4776.

DOI: 10.1002/anie.201600705

Google Scholar