Vibrational Spectroscopy Analysis of Oligothiophene Blend Film

Article Preview

Abstract:

One of the challenges in fabricating organic semiconductor thin film is to produce bettermolecular ordering that compromise its electronic properties. Molecular ordering of amorphous thin film can be improved in many ways. Here, high molecular weight polylactic acid (PLA) is introduced as binding matrix to promote 3'''-didodecyl-2,2':5',2'':5'',2'''-quaterthiophene (4T) film’s homogeinity across indium tin oxide (ITO) surface. Molecular ordering of the spin coated biodegradable PLA and 4T blend film processed at ambient atmosphere was studied using two vibrational spectroscopy methods. The complementary analysis of infrared absorption spectrum and Raman spectrum had identified several vibrational modes contributed by thiophene rings and alkyl functional groups. The Raman analysis implied there is a slight change of thiophene ringsʼ molecular orientation due to compressive stress after introduction of polymer. Microscopic characteristics of oligothiophenes especially at the π-π conjugated backbones contained crucial information in order to exploit the oligothiophene as flexible electronics devices.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

457-462

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Casado, R. P. Ortiz, M. C. R. Delgado, R. Azumi, R. T. Oakley, V. Hernandez, J. T. Navarrete, Multidisciplinary Physicochemical Analysis of Oligothiophenes End-Capped by Nitriles: Electrochemistry, UV−Vis−Near-IR, IR, and Raman Spectroscopies and Quantum Chemistry, J. Phys. Chem. B 109 (2005) 10115-10125. https://doi.org/10.1021/jp0446175.

DOI: 10.1021/jp0446175

Google Scholar

[2] L. Zhang, N. S. Colella, B. P. Cherniawski, S. C. B. Mannsfled, A. L. Briseno, Oligothiophene Semiconductors: Synthesis, Characterization, and Applications for Organic Devices, ACS Appl. Mater. Interfaces 6 (2014) 5327-5343. https://doi.org/10.1021/am4060468.

DOI: 10.1021/am4060468

Google Scholar

[3] S. Z. N. Demon, Y. Miyauchi, G. Mizutani, T. Matsushima, H. Murata, Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide, Appl. Surf. Sci. 311 (2014) 715-720. https://doi.org/10.1016/j.apsusc.2014.05.142.

DOI: 10.1016/j.apsusc.2014.05.142

Google Scholar

[4] Y. Miyauchi, R. Yukutake, K. Tsuchida, Y. Umemura, A. Tsukamoto, T. Suzuki, Observation by optical second harmonic generation of the mean tilt angle of cyanine dyes during compression with a phase transition in a Langmuir-Blodgett trough, Chem. Phys. 517 (2019) 85-90.

DOI: 10.1016/j.chemphys.2018.09.028

Google Scholar

[5] S. Duhm, G. Heimel, I. Salzmann, H. Glowatzki, R. L. Johnson, A. Vollmer, J. P. Rabe, N. Koch, Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies, Nat. Mater. 7 (2008) 326-332. https://doi.org/10.1038/nmat2119.

DOI: 10.1038/nmat2119

Google Scholar

[6] A. Milani, L. Brambilla, M. D. Zoppo, G. Zerbi, Raman Dispersion and Intermolecular Interactions in Unsubstituted Thiophene Oligomers, J. Phys. Chem. B 111 (2007) 1271 -1276.

DOI: 10.1021/jp066933k

Google Scholar

[7] A. Tamanai, S. Beck, A. Pucci, Mid-infrared characterization of thiophene-based thin polymer films, Displays 34 (2013) 399-405. https://doi.org/10.1016/j.displa.2013.08.005.

DOI: 10.1016/j.displa.2013.08.005

Google Scholar

[8] W. C. Tsoi, D. T. James, J.S. Kim, P. G. Nicholson, C.E. Murphy, D. D. C. Bradley, J. Nelson, he Nature of In-Plane Skeleton Raman Modes of P3HT and Their Correlation to the Degree of Molecular Order in P3HT:PCBM Blend Thin Films, J. Am. Chem. Soc. 133 (2011) 9834-9843.

DOI: 10.1021/ja2013104

Google Scholar

[9] A. E. Bragg, W. Yu J. Zhou, T. Magnanelli, Ultrafast Raman Spectroscopy as a Probe of Local Structure and Dynamics in Photoexcited Conjugated Materials, J. Phys. Chem. Lett. 7 (2016) 3990-4000. https://doi.org/10.1021/acs.jpclett.6b01060.

DOI: 10.1021/acs.jpclett.6b01060

Google Scholar

[10] Y. Li, P. Sonar, S. P. Singh, M. S. Soh, M. van Meurs, J. Tan, Annealing-Free High-Mobility Diketopyrrolopyrrole−Quaterthiophene Copolymer for Solution-Processed Organic Thin Film Transistors, J. Am. Chem. Soc. 133 (2011) 2198-2204. https://doi.org/10.1021/ja1085996.

DOI: 10.1021/ja1085996

Google Scholar

[11] S. Z. N. Demon, N. A. Poad, N. F. Rahmat, N. Bidin, Preparation of Indium Tin Oxide/Quaterthiophene Thin Film for Solution Processed Organic Device, Solid State Phenomena 268 (2017) 269-273. https://doi.org/10.4028/www.scientific.net/SSP.268.269.

DOI: 10.4028/www.scientific.net/ssp.268.269

Google Scholar

[12] D. Fichou, G. Horowitz, B. Xu, F. Garnier, Low temperature optical absorption of polycrystalline thin films of α-quaterthiophene, α-sexithiophene and α-octithiophene, three model oligomers of polythiophene, Syn. Met. 48 (1992) 167-179.

DOI: 10.1016/0379-6779(92)90059-r

Google Scholar

[13] M. Szybowicz, W. Bała, K. Fabisiak, K. Paprocki, M. Drozdowski, The molecular structure ordering and orientation of the metallophthalocyanine CoPc, ZnPc, CuPc, and MgPc thin layers deposited on silicon substrate, as studied by micro-Raman spectroscopy, Journal of Materials Science 46 (2011) 6589-6595. https://doi.org/10.1007/s10853-011-5607-4.

DOI: 10.1007/s10853-011-5607-4

Google Scholar

[14] X. Wang, J. Zheng, K. Qiao, J. Qu, C. Cao, Studies on structure and Raman spectroscopy of Ni-doped copper phthalocyanine thin films, App. Surf. Sci. 297 (2014)188-194.

DOI: 10.1016/j.apsusc.2014.01.122

Google Scholar

[15] D. Drapcho, T. Hasegawa, Applications of Infrared Multiple Angle Incidence Resolution Spectrometry, Quantum Mechanics 30 (2015) 31–38.

Google Scholar

[16] G. S. Bumbrah, R. M. Sharma, Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse, Egyptian Journal of Forensic Sciences 6 (2016) 209-215. https://doi.org/10.1016/j.ejfs.2015.06.001.

DOI: 10.1016/j.ejfs.2015.06.001

Google Scholar

[17] Y. S. Li, J. S. Church, Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials, Journal of Food and Drug Analysis 22 (2014) 29-48.

DOI: 10.1016/j.jfda.2014.01.003

Google Scholar