The Optical Properties of Thin Films Tin Oxide with Triple Doping (Aluminum, Indium, and Fluorine) for Electronic Device

Article Preview

Abstract:

Tin oxide (SnO2) thin film is a form of modification of semiconductor material in nanosize. The thin film study aims to analyze the effect of triple doping (Aluminum, Indium, and Fluorine) on the optical properties of SnO2: (Al + In + F) thin films. Aluminum, Indium, and Fluorine as doping SnO2 with a mass percentage of 0, 5, 10, 15, 20, and 25% of the total thin-film material. The addition of Al, In, and F doping causes the thin film to change optical properties, namely the transmittance and absorbance values ​​changing. The transmittance value is 67.50, 73.00, 82.30, 87.30, 94.6, and 99.80 which is at a wavelength of 350 nm for the lowest to the highest doping percentage, respectively. The absorbance value increased with increasing doping percentage at 300 nm wavelength of 0.52, 0.76, 0.97, 1.05, 1.23, and 1.29 for 0, 5, 10, 15, 20, and 25% doping percentages, respectively. The absorbance value is then used to find the gap energy of the SnO2: (Al + In + F) thin film of the lowest doping percentage to the highest level i.e. 3.60, 3.55, 3.51, 3.47, 3.42, and 3.41 eV. Thin-film activation energy also decreased with values of 2.27, 2.04, 1.85, 1.78, 1.72, and 1.51 eV, respectively for an increasing percentage of doping. The thin-film SnO2: (Al + In + F) which experiences a gap energy reduction and activation energy makes the thin film more conductive because electron mobility from the valence band to the conduction band requires less energy and faster electron movement as a result of the addition of doping.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

477-482

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Mandelis, Focus on materials, semiconductors, vacuum, and cryogenics, Journal Physics Today 72(10) (2019) 68-69.

DOI: 10.1063/pt.3.4324

Google Scholar

[2] X. Wang, Flexible Transparent Thin Film Electrodes, Conference: Printed and Flexible Electronics Congress 2017 in London, United Kingdom, (2017).

Google Scholar

[3] A. B. Kashyout, M. Fathy, S. Gad, Y. Badr, A. A. Bishara, Synthesis of Nanostructure InxGa1-xN Bulk Alloys and Thin Films for LED Devices, Photonics 6(2) (2019) 44.

DOI: 10.3390/photonics6020044

Google Scholar

[4] S. H. Chen, Thin Film Solar Cells, Optical Interference Coatings 2016.

Google Scholar

[5] M. Kimura, Thin film transistors for active-matrix LCDs, in: s. Ishihara, S. Kobayashi, Y. Ukai, High-Quality Liquid Crystal Displays and Smart Devices - Volume 1: Development, display applications, and components, Institution of Engineering and Technology, 2019, pp.255-270.

DOI: 10.1049/pbcs068f_ch14

Google Scholar

[6] C. L. Lu, S-J. Chang, T. C. Weng, T. J. Hsueh, A Bifacial SnO2 Thin Film Ethanol Gas Sensor, IEEE Electron Device Letters PP(99) (2018) 1-1.

DOI: 10.1109/led.2018.2846807

Google Scholar

[7] A. S. Pawbake, R. G. Waykar, D. J. Late, S. R. Jadkar, Highly Transparent Wafer-Scale Synthesis of Crystalline WS2 Nanoparticle Thin Film for Photodetector and Humidity-Sensing Applications, ACS Applied Materials & Interfaces 8(5) (2016) 3359–3365.

DOI: 10.1021/acsami.5b11325

Google Scholar

[8] M. R. Panigrahi, M. Devi, Variation of Optical and Electrical Properties of Zr Doped TiO2 Thin Films with Different Annealing Temperatures, Journal of Physics: Conference Series 1172 (2019) 012046.

DOI: 10.1088/1742-6596/1172/1/012046

Google Scholar

[9] M. A. Yıldırım, S. T. Yıldırım, E. F. Sakar, A. Ateş, Synthesis, characterization and dielectric properties of SnO2 thin films. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 133 (2014) 60–65.

DOI: 10.1016/j.saa.2014.05.035

Google Scholar

[10] A. Arif, O. Belahssen, S. Gareh, S. Benramache, The calculation of bandgap energy in zinc oxide films. Journal of Semiconductors 36(1) (2015) 013001.

DOI: 10.1088/1674-4926/36/1/013001

Google Scholar

[11] D. L. Kamble, N. S. Harale, V. L. Patil, P. S. Patil, L. D. Kadam, Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films, Journal of Analytical and Applied Pyrolysis 127 (2017) 38–46.

DOI: 10.1016/j.jaap.2017.09.004

Google Scholar

[12] A. Doyan, Susilawati, N. Ikraman, M. Taufik, Characterization of SnO2 Film with Al-Zn Doping Using Sol-Gel Dip Coating Techniques. Journal of Physics: Conference Series 1011 (2018) 012015.

DOI: 10.1088/1742-6596/1011/1/012015

Google Scholar

[13] E. López, J. Marín, J. Osorio, Synthesis, and characterization of SnO2 thin films doped with Fe to 10%, aip Conference Proceedings 1598(1) (2014) 51-54.

DOI: 10.1063/1.4878277

Google Scholar

[14] L. Muliyadi, A. Doyan, Susilawati, S. Hakim, Synthesis of SnO2 Thin Layer with a Doping Fluorine by Sol-Gel Spin Coating Method, Journal of Research in Science Education 5(2) (2019) 175-178.

DOI: 10.29303/jppipa.v5i2.257

Google Scholar

[15] S. Hakim, A. Doyan, Susilawati, L. Muliyadi, Synthesis Thin Films SnO2 with Doping Indium by Sol-gel Spin coating, Journal of Research in Science Education 5(2) (2019) 171-174.

DOI: 10.29303/jppipa.v5i2.254

Google Scholar

[16] K. Kaviyarasu, C. M. Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, E. S. Reddy, M. Maaza,  Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method, Journal of Photochemistry and Photobiology B: Biology 173 (2017) 466–475.

DOI: 10.1016/j.jphotobiol.2017.06.026

Google Scholar

[17] Susilawati, A. Doyan, L. Muliyadi, S. Hakim, Growth of Tin Oxide Thin Film by Aluminum and Fluorine Doping Using Spin Coating Sol-Gel Techniques, Journal of Research in Science Education 6 (1) (2019) 1-4.

DOI: 10.29303/jppipa.v6i1.264

Google Scholar

[18] M. S. Bannur, A. Antony, K. I. Maddani, P. Poornesh, A. Rao, K. S. Choudhari, Tailoring the nonlinear optical susceptibility χ(3), photoluminescence and optical band gap of nanostructured SnO2 thin films by Zn doping for photonic device applications, Physica E: Low-Dimensional Systems and Nanostructures 103 (2018) 348–353.

DOI: 10.1016/j.physe.2018.06.025

Google Scholar

[19] G. Bhatia, V. K. Gupta, M. M. Patidar, S. B. Srivasatava, D. Singh, M. Gangrade, V. Ganesan, Structural, morphological and electrical properties of Sb doped SnO2 thin film by spray pyrolysis, AIP Conference Proceedings 1953 (2018) 100084.

DOI: 10.1063/1.5033020

Google Scholar

[20] Susilawati, A. Doyan, Dose-response and optical Properties of Dyed Poly Vinyl Alcohol-Trichloroacetic Acid Polymeric Blends Irradiated with Gamma-Rays, American Journal of Applied Science 6 (12) (2009) 2071-2077.

DOI: 10.3844/ajassp.2009.2071.2077

Google Scholar

[21] R. Wielgosz, B. Kulyk, B. Turko, T. Chtouki, V. Kapustianyk, B. Sahraoui, Nanostructured CuO Thin Film for Nonlinear Optical Applications, 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019) 1-4.

DOI: 10.1109/icton.2019.8840496

Google Scholar

[22] A. Doyan, Susilawati, Y. D. Imawanti, Synthesis and Characterization of SnO2 thin layer with a doping Aluminum is deposited on Quartz Substrates, American Institute of Physics 1801 (2017) 1-7.

DOI: 10.1063/1.4973083

Google Scholar

[23] A. Doyan, Susilawati, Y. D. Imawanti, E. R. Gunawan, M. Taufik, Characterization Thin Film Nano Particle Of Aluminum Tin Oxide (AITO) as Touch Screen, Journal of Physics 1097 (2017) 1-9.

DOI: 10.1088/1742-6596/1097/1/012009

Google Scholar

[24] A. Doyan, Susilawati, S. A. Fitri, S. Ahzan, Cristal Structure Characterization of Thin Layer Zinc Oxide, Materials Science and Engineering 196 (2017) 1-6.

DOI: 10.1088/1757-899x/196/1/012004

Google Scholar

[25] A. Doyan, Susilawati, A. Harjono, S. Azzahra, M. Taufik, Characterization of Tin Oxide Doping Antimony Thin Layer With Sol-Gel Spin Coating Method for Electronic Device, Journal Materials Science Forum 966 (2019) 30-34.

DOI: 10.4028/www.scientific.net/msf.966.30

Google Scholar