Influence of Ageing Time and Different Ni wt.% on Triplex Steel

Article Preview

Abstract:

This paper presents a study of three types of Triples steel, where containing 16 to 28 wt.% manganese, 0.8 to 0.89 wt.% Carbon, 9.9 to 11.21 wt.% Aluminum, and with different Nickel content. We investigated the aging effect on properties of Triplex steel by using an optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). The used temperature in the ageing process is 550°C and we take three different times in that process (1min, 1hr, and 5hrs). The microstructure shows one austenite phase of an as-rolled sample without Ni and shows two austenite phases of an as-rolled sample with Ni content. The k-carbide, intermetallic phase (Ni3Al) and annealing twins formation will appear after adding Ni element. Furthermore, those phases will be increased with aging time. X-ray diffraction shows a competitive formation between the k-carbides and intermetallic phase formation during the aging time. It's confirmed that K-carbides will be formed first after that intermetallic phase, where k-carbides were formed at low temperature. Finally, we can conclude from these results that adding Ni in Triplex steel improves the ductility with 1hr aging time.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 318)

Pages:

1-11

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] BRONZ, A., et al. Structure and strength cast high aluminum and manganese of iron alloys with a high carbon content. In: Machines, Technolgies, Materials 9o International Congress, Varna, Bulgaria. (2012). pp.36-37.

Google Scholar

[2] Kim, Young G., Jong M. Han, and Jong S. Lee. Composition and temperature dependence of tensile properties of austenitic Fe-Mn-Al-C alloys., Materials Science and Engineering: A 114 (1989): 51-59.

DOI: 10.1016/0921-5093(89)90844-7

Google Scholar

[3] Shih, S. T., C. Y. Tai, and T. P. Perng. Corrosion behavior of two-phase Fe-Mn-Al alloys in 3.5% NaCl solution., Corrosion 49.2 (1993): 130-134.

DOI: 10.5006/1.3299207

Google Scholar

[4] Saxena, Vikas Kumar, et al. Fatigue and fracture behavior of a nickel-chromium free austenitic steel., International journal of pressure vessels and piping 60.2 (1994): 151-157.

DOI: 10.1016/0308-0161(94)90021-3

Google Scholar

[5] Zhu, X. M., and Y. S. Zhang. Investigation of the electrochemical corrosion behavior and passive film for Fe-Mn, Fe-Mn-Al, and Fe-Mn-Al-Cr alloys in aqueous solutions., Corrosion 54.1 (1998): 3-12.

DOI: 10.5006/1.3284826

Google Scholar

[6] Morris Morris, D. G., M. A. Muñoz-Morris, and L. M. Requejo. New iron–aluminium alloy with thermally stable coherent intermetallic nanoprecipitates for enhanced high-temperature creep strength., Acta materialia 54.9 (2006): 2335-2341.

DOI: 10.1016/j.actamat.2006.01.008

Google Scholar

[7] Frommeyer, Georg, and Udo Brüx. Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels., Steel Research International 77.9-10 (2006): 627-633.

DOI: 10.1002/srin.200606440

Google Scholar

[8] James, P.J. Precipitation of The Carbide Fe-Mn-3Al-C in an iron-aluminium alloy., J Iron Steel Inst 207.1 (1969): 54-57.

Google Scholar

[9] Lai, H. J., and C. M. Wan. The study of work hardening in Fe-Mn-Al-C alloys., Journal of materials science 24.7 (1989): 2449-2453.

DOI: 10.1007/bf01174510

Google Scholar

[10] Chen, F. C., et al. Effect of aluminium on TRIP Fe-Mn-Al alloy steels at room temperature., Materials Science and Engineering: A 160.2 (1993): 261-270.

DOI: 10.1016/0921-5093(93)90455-n

Google Scholar

[11] Sato, Kazunori, Kazuhiro Tagawa, and Yasunobu Inoue. Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys., Metallurgical Transactions A 21.1 (1990): 5-11.

DOI: 10.1007/bf02656419

Google Scholar

[12] Hwang, C. N., C. Y. Chao, and T. F. Liu. Grain boundary precipitation in an Fe-8.0 Al-31.5 Mn-1.05 C alloy., Scripta metallurgica et materialia 28.2 (1993): 263-268.

DOI: 10.1016/0956-716x(93)90574-c

Google Scholar

[13] Rahnama, Alireza, Hiren Kotadia, and Seetharaman Sridhar. Effect of Ni alloying on the microstructural evolution and mechanical properties of two duplex light-weight steels during different annealing temperatures: Experiment and phase-field simulation., Acta Materialia 132 (2017): 627-643.

DOI: 10.1016/j.actamat.2017.03.043

Google Scholar

[14] Mazancová, Eva, Ivan Ružiak, and Ivo Schindler. Influence of rolling conditions and aging process on mechanical properties of high manganese steels., Archives of Civil and Mechanical Engineering 12.2 (2012): 142-147.

DOI: 10.1016/j.acme.2012.04.009

Google Scholar

[15] MAZANCOVÁ, Eva, et al. Influence of aging process on strengthening of three Triplex steel types.,‏‏ Brno, Czech Republic, EU, 2012, 23. - 25. 5.

Google Scholar

[16] Li, Changsheng, et al. The Annealing Twins of Fe-20Mn-4Al-0.3 C Austenitic Steels during Symmetric and Asymmetric Hot Rolling., Metals 8.11 (2018): 882.

DOI: 10.3390/met8110882

Google Scholar

[17] Frommeyer, G. Microstructure and mechanical properties of high-strength and supraductile manganese-aluminium lightweight TRIPLEX steels., 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys. (2006).

Google Scholar

[18] Yoo, Je Doo, Si Woo Hwang, and Kyung-Tae Park. Factors influencing the tensile behavior of a Fe–28Mn–9Al–0.8 C steel., Materials Science and Engineering: A 508.1-2 (2009): 234-240.

DOI: 10.1016/j.msea.2008.12.055

Google Scholar

[19] Herrmann, J., G. Inden, and G. Sauthoff. Deformation behaviour of iron-rich iron-aluminum alloys at low temperatures., Acta Materialia 51.10 (2003): 2847-2857.

DOI: 10.1016/s1359-6454(03)00089-2

Google Scholar

[20] Takasugi, T., S. Hanada, and O. Izumi. Slip modes in B2-type intermetallic alloys., Materials Transactions, JIM 31.6 (1990): 435-442.

DOI: 10.2320/matertrans1989.31.435

Google Scholar

[21] Rahnama, Alireza, Stephen Spooner, and Seetharaman Sridhar. Control of intermetallic nano-particles through annealing in duplex low density steel., Materials Letters 189 (2017): 13-16.

DOI: 10.1016/j.matlet.2016.11.020

Google Scholar