Precipitation Hardening of Triplex Steel by Using Nickel Aluminum Inter-Metallic Precipitates

Article Preview

Abstract:

This paper deals with three types of triplex steel, where containing 25 to 28 wt.% manganese, 0.8 to 0.89 wt.% Carbon, 9.9 to 11.11 wt.% Aluminum, and with different Nickel content. Two types contain Ni in range of 0.9 to 2 wt.% and third type doesn’t contain Ni. The precipitation of Nano-size kappa carbides is the most proper technique used for this objective. It is expected that inter-metallic strengthening mechanism should act more effective in promoting the strength of Triplex steel with ductility. From this point of view, this research was designed to study the effect of inter-metallic inductive alloying element as Nickel on promoting of the strength and ductility of the high aluminum containing high manganese steel. Optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to detect of inter-metallic precipitates through steel investigated ranged in Nickel from 0 to 2 wt.%. Mechanical and strain hardening properties were determined in the steel investigated after different regimes of heat treatment. It was found that Ni3Al inter-metallic compound provides the austenite matrix with good strength and ductility, depending on the ageing time. Further deterioration was obviously observed in the steel investigated as increasing the ageing time, attributing to coarse structure occurrence.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 318)

Pages:

25-37

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lee, Y-K., S-J. Lee, and Jeongho Han. Critical assessment 19: stacking fault energies of austenitic steels., (2016): 1-8.

Google Scholar

[2] Bronz, A., et al. Structure and strength cast high aluminum and manganese of iron alloys with a high carbon content. In: Machines, Technolgies, Materials 9o International Congress, Varna, Bulgaria. (2012). pp.36-37.‏‏ ‏.

Google Scholar

[3] Lee, P. Y., et al. High temperature oxidation resistance of Fe-Mn-Al alloys at 600° C., High Temperature Materials and Processes 10.3 (1992): 141-144.

DOI: 10.1515/htmp.1992.10.3.141

Google Scholar

[4] Shih, S. T., C. Y. Tai, and T. P. Perng. Corrosion behavior of two-phase Fe-Mn-Al alloys in 3.5% NaCl solution., Corrosion 49.2 (1993): 130-134.

DOI: 10.5006/1.3299207

Google Scholar

[5] Saxena, Vikas Kumar, et al. Fatigue and fracture behavior of a nickel-chromium free austenitic steel., International journal of pressure vessels and piping 60.2 (1994): 151-157.‏‏ ‏‏.

DOI: 10.1016/0308-0161(94)90021-3

Google Scholar

[6] Zhu, X. M., and Y. S. Zhang. Investigation of the electrochemical corrosion behavior and passive film for Fe-Mn, Fe-Mn-Al, and Fe-Mn-Al-Cr alloys in aqueous solutions., Corrosion 54.1 (1998): 3-12.

DOI: 10.5006/1.3284826

Google Scholar

[7] Herrmann, J., G. Inden, and G. Sauthoff. Deformation behaviour of iron-rich iron-aluminum alloys at low temperatures., Acta Materialia 51.10 (2003): 2847-2857.

DOI: 10.1016/s1359-6454(03)00089-2

Google Scholar

[8] Hamada, A. S., and L. P. Karjalainen. Nitric acid resistance of new type Fe-Mn-Al stainless steels., Canadian metallurgical quarterly 45.1 (2006): 41-48.

DOI: 10.1179/cmq.2006.45.1.41

Google Scholar

[9] Morris, D. G., and L. M. Requejo. MA Mu noz-Morris., Intermetallics 13 (2005): 1269-1274.

Google Scholar

[10] Zambrano, O. A. A general perspective of Fe–Mn–Al–C steels., Journal of materials science 53.20 (2018): 14003-14062.

DOI: 10.1007/s10853-018-2551-6

Google Scholar

[11] Choo, Woong K., and Kwan H. Han. Phase constitution and lattice parameter relationships in rapidly solidified (Fe 0.65 Mn 0.35) 0.83 Al 0.17-xC and Fe 3 Al-xC pseudo-binary alloys., Metallurgical Transactions A 16.1 (1985): 5-10.

DOI: 10.1007/bf02656705

Google Scholar

[12] Sato, Kazunori, Kazuhiro Tagawa, and Yasunobu Inoue. Age hardening of an Fe-30Mn-9Al-0.9 C alloy by spinodal decomposition., Scripta metallurgica 22.6 (1988): 899-902.

DOI: 10.1016/s0036-9748(88)80071-1

Google Scholar

[13] Sato, Kazunori, Kazuhiro Tagawa, and Yasunobu Inoue. Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys., Metallurgical Transactions A 21.1 (1990): 5-11.

DOI: 10.1007/bf02656419

Google Scholar

[14] Choo, Woong Kil, J. H. Kim, and J. C. Yoon. Microstructural change in austenitic Fe-30.0 wt% Mn-7.8 wt% Al-1.3 wt% C initiated by spinodal decomposition and its influence on mechanical properties., Acta Materialia 45.12 (1997): 4877-4885.

DOI: 10.1016/s1359-6454(97)00201-2

Google Scholar

[15] Sanders, W., and G. Sauthoff. Deformation behaviour of perovskite-type phases in the system Fe-Ni-Al-C. I: Strength and ductility of Ni3AlCx and Fe3AlCx alloys with various microstructures., Intermetallics 5.5 (1997): 361-375.

DOI: 10.1016/s0966-9795(97)00008-3

Google Scholar

[16] Frommeyer, Georg, and Udo Brüx. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels., Steel Research International 77.9-10 (2006): 627-633.

DOI: 10.1002/srin.200606440

Google Scholar

[17] Eighmy, T. T., Crannell, B. S., Butler, L. G., Cartledge, F. K., Emery, E. F., Oblas, D., .. & Francis, C. A. Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environmental Science & Technology, 31(11), (1997): 3330-3338.

DOI: 10.1021/es970407c

Google Scholar

[18] Han, Kwan H., and Woong K. Choo. Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys., Metallurgical Transactions A 20.2 (1989): 205-214.

DOI: 10.1007/bf02670246

Google Scholar

[19] Tawancy, H. M. On the Precipitation of Intermetallic Compounds in Selected Solid-Solution-Strengthened Ni-Base Alloys and Their Effects on Mechanical Properties., Metallography, Microstructure, and Analysis 6.3 (2017): 200-215.

DOI: 10.1007/s13632-017-0352-y

Google Scholar

[20] Han, Kwan H., Jong C. Yoon, and Woong K. Choo. TEM evidence of modulated structure in Fe-Mn-Al-C austenitic alloys., Scripta metallurgica 20.1 (1986): 33-36.

DOI: 10.1016/0036-9748(86)90208-5

Google Scholar

[21] Engler, O., and V. Randle. "Introduction to Texture Analysis Macrotexture, Microtexture and Orientation Mapping. (2010).

DOI: 10.1201/9781482287479

Google Scholar

[22] Song, Wenwen, et al. κ-phase formation in Fe–Mn–Al–C austenitic steels., steel research international 86.10 (2015): 1161-1169.

DOI: 10.1002/srin.201400587

Google Scholar

[23] Kalashnikov, I. S., et al. Heat treatment and thermal stability of FeMnAlC alloys., Journal of Materials Processing Technology 136.1-3 (2003): 72-79.

DOI: 10.1016/s0924-0136(02)00937-8

Google Scholar

[24] Van den Beukel, A. Theory of the effect of dynamic strain aging on mechanical properties., Physica status solidi (a) 30.1 (1975): 197-206.

DOI: 10.1002/pssa.2210300120

Google Scholar

[25] Takasugi, T., et al. Plastic flow instabilities of L12 Co3Ti alloys at intermediate temperatures., Acta materialia 50.4 (2002): 847-855.

DOI: 10.1016/s1359-6454(01)00378-0

Google Scholar

[26] Breuer, J., et al. Enthalpy of formation of B2-Fe 1− x Al x and B2-(Ni, Fe) 1− x Al x., Metallurgical and Materials Transactions B 32.5 (2001): 913-918.

DOI: 10.1007/s11663-001-0077-8

Google Scholar

[27] Rahnama, Alireza, Stephen Spooner, and Seetharaman Sridhar. Control of intermetallic nano-particles through annealing in duplex low-density steel., Materials Letters 189 (2017): 13-16.

DOI: 10.1016/j.matlet.2016.11.020

Google Scholar