Extending High Value Components Performances with Additive Manufacturing: Application to Naval Applications

Article Preview

Abstract:

Additive Manufacturing (AM), consists of depositing material in successive layers to obtain the desired part. The parts produced by AM can thus adopt geometries inaccessible by conventional manufacturing means, for example hollow or lattice structures which considerably reduce their weight while keeping or even improving their mechanical properties. Among the many existing processes, Wire Arc Additive Manufacturing (WAAM) is particularly well suited to the manufacture of large metallic parts. It is characterized by a supply of heat in the form of an electric arc (produced by a welding generator) and a supply of material in the form of wire. This paper will discuss the impact of additive manufacturing to enhance the performances of high value components, based on naval application: the manufacturing of a hollow propeller blade demonstrator of 1.5 m high realized in the laboratory.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 319)

Pages:

58-62

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ISO/ASTM 52900, « ISO/ASTM 52900:2015 », ISO. https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/06/96/69669.html.

DOI: 10.31030/2631641

Google Scholar

[2] P. Muller, J.-Y. Hascoet, and P. Mognol, « Toolpaths for additive manufacturing of functionally graded materials (FGM) parts », Rapid Prototyp. J., 20(6), (2014), 511‑522,.

DOI: 10.1108/rpj-01-2013-0011

Google Scholar

[3] J. Um, M. Rauch, J.-Y. Hascoët, and I. Stroud, « STEP-NC compliant process planning of additive manufacturing: remanufacturing », Int. J. Adv. Manuf. Technol., 88, (2016), 1215-1230,.

DOI: 10.1007/s00170-016-8791-1

Google Scholar

[4] J. Kerninon, P. Mognol, J. Y. Hascoet, and C. Legonidec, « Effect of path strategies on metallic parts manufactured by additive process », Solid Freeform Fabrication Symposium, (2008), 352-361.

Google Scholar

[5] S. W. Williams, F. Martina, A. C. Addison, J. Ding, G. Pardal, and P. Colegrove, « Wire + Arc Additive Manufacturing », Mater. Sci. Technol., 32(7), (2016), 641‑647,.

DOI: 10.1179/1743284715y.0000000073

Google Scholar

[6] J.-Y. Hascoët, V. Querard, and M. Rauch, « Interests of 5 axis Tool Paths Generation for Wire Arc Additive Manufacturing of Aluminum Alloys », Journal of Machine Engineering, 13(3), (2018), 51-65.

Google Scholar

[7] A. Queguineur, G. Rückert, F. Cortial, and J. Y. Hascoët, « Evaluation of wire arc additive manufacturing for large-sized components in naval applications », Weld. World, 62(2), (2018) 259‑266,.

DOI: 10.1007/s40194-017-0536-8

Google Scholar

[8] W. Ya and K. Hamilton, « On-Demand Spare Parts for the Marine Industry with Directed Energy Deposition: Propeller Use Case », Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017, (2018), 70‑81,.

DOI: 10.1007/978-3-319-66866-6_7

Google Scholar

[9] « Ramsses Project: Ramsses Project ». https://www.ramsses-project.eu/.

Google Scholar

[10] P. Muller, G. Rückert, and P. Vinot, « On the benefits of metallic additive manufacturing for propellers », Sixth International Symposium on Marine Propulsors, Rome (Italy), (2019), 1-8.

Google Scholar

[11] G. Pechet, J.-Y. Hascoet, M. Rauch, G. Ruckert and A-S. Thorr, 2019. Manufacturing of a Hollow Propeller Blade with WAAM Process - From the Material Characterisation to the Achievement., Industry 4.0 summit – Shaping the Future of the Digital World, Manchester (UK), (2019), 1-6, ISBN: 978-0-367-42272-1.

DOI: 10.1201/9780367823085-28

Google Scholar