Correlating the Annealing Temperature Dependence of the Structural Inhomogeneity and the Diffusion in Zr-Ti-Cu-Ni-Be Glassy System

Article Preview

Abstract:

The relation between the annealing temperature dependence of the structural inhomogeneity and the diffusion coefficient in a metallic glass forming system Zr-Ti-Cu-Ni-Be is studied by using reported experimental data. It is shown that the diffusion coefficient increases with the increase of the correlation length of the structural inhomogeneity. Interestingly, the result found resembles the behavior known in superionic glasses. A discussion on the found relationship is given by exploiting the model for the superionic glasses proposed by the author. Based on the model, an inhomogeneity dependent diffusivity maximum is predicted.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 330)

Pages:

11-15

Citation:

Online since:

April 2022

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. L. Greer, Mater. Today 12 (2009) 14-22.

Google Scholar

[2] W. H. Wang, Prog. Mater. Sci. 106 (2019) 100561.

Google Scholar

[3] M. Miller, P. Liaw (Eds.), Bulk Metallic Glasses, Springer, New York, (2008).

Google Scholar

[4] C. Suryanarayana, A. Inoue, Bulk Metallic Glasses, CRC Press, New York, (2011).

Google Scholar

[5] J. F. Löffler, P. Thiyagarajan, W. L. Johnson, J. Appl. Cryst. 33 (2020) 500-503.

Google Scholar

[6] U. Geyer, S. Schneider, W. L. Johnson, Y. Qiu, T. A. Trombrello, M.-P. Macht, Phys. Rev. Lett. 75 (1995) 2364-2367.

Google Scholar

[7] F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H. R. Schober, S. K. Sharma, H. Telchler, Rev. Mod. Phys. 75 (2003) 237-280.

DOI: 10.1103/revmodphys.75.237

Google Scholar

[8] M. Aniya, Solid State Ionics 136-137 (2000) 1085-1089.

Google Scholar

[9] T. Yamasaki, S. Maeda, Y. Yokoyama, D. Okai, T. Fukami, H. M. Kimura, A. Inoue, Intermet. 14 (2006) 1102-1106.

Google Scholar

[10] P. A. Duine, J. Sietsma, A. van den Beukel, Phys. Rev. B 48 (1993) 6957-6965.

Google Scholar

[11] D. L. Price, Curr. Opin. Solid State & Mater. Sci. 1 (1996) 572-577.

Google Scholar

[12] D. L. Price, S. C. Moss, R. Reijers, M. -L. Saboungi, S. Susman, J. Phys.: Condens. Matter 1 (1989) 1005-1008.

DOI: 10.1088/0953-8984/1/5/017

Google Scholar

[13] J. Swenson, R. L. McGreevy, L. Börjesson, J. D. Wicks, W. S. Howells, J. Phys.: Condens. Matter 8 (1996) 3445-3552.

Google Scholar

[14] J. Kawamura, in: H. Iwahara (Ed.), Dynamics of Fast Ions in Solids and Its Evolution for Solid State Ionics, Report, 1997, pp.11-16.

Google Scholar

[15] J. Swenson, L. Börjesson, Phys. Rev. Lett. 77 (1996) 3569-3572.

Google Scholar

[16] M. Aniya, Solid State Ionics 50 (1992) 125-129.

Google Scholar

[17] M. Aniya, J. Kawamura, Solid State Ionics 154-155 (2002) 343-348.

DOI: 10.1016/s0167-2738(02)00571-4

Google Scholar

[18] M. Aniya, Integr. Ferroelec. 115 (2010) 81-94.

Google Scholar

[19] M. Aniya, Pure Appl. Chem. 91 (2019) 1797-1806.

Google Scholar

[20] S. K. Kuanr, G. Vinothkumar, U. Aarthi, K. S. Babu, Appl. Surf. Sci. 481 (2019) 1394-1402.

Google Scholar

[21] L. Sun, J. Wang, G. Jiao, L. Huang, Surf. Interface Anal. 53 (2021) 135-139.

Google Scholar

[22] M. R. Chellali, S. H. Nandam, H. Hahn, Phys. Rev. Lett. 125 (2020) 205501.

Google Scholar