Influence of a Micro-Arc Oxidation/Poly-Lactic Acid Composite Coating on Corrosion Resistance of Extruded Mg-2Zn-0.5Zr-1.5Dy (Mass%) Alloy

Article Preview

Abstract:

Micro-arc oxidation (MAO) coating can significantly slow down the repaid degradation rate of biodegradable magnesium alloy, but the porous characteristics of the coating cannot provide long-term protection to magnesium alloy. In this paper, poly-lactic acid (PLA) was used to seal the porous MAO coating on the surface of extruded Mg-2Zn-0.5Zr-1.5Dy (mass%) magnesium alloy by a dipping coating method. Assessments were conducted by electrochemical experiment, immersion test, and hydrogen evolution experiment. The result shows that after the MAO-coated sample was dipped in PLA solution four times, the PLA could largely seal the porous and cracks of the MAO coating, and a dense MAO/PLA composite coating with a thickness of ~ 50 μm was prepared. The MAO/PLA composite coating provides good and stable protection to the alloy under 0~56 d immersion in the simulated body fluid than the single MAO coating, which shows an excellent application potential in the field of biodegradable magnesium alloy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 331)

Pages:

131-136

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Chen, J.J. Dou, H.J. Yu, C.Z. Chen, Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements, J. Biomater. Appl. 33 (2019) 1348-1372.

DOI: 10.1177/0885328219834656

Google Scholar

[2] P.C. Banerjee, S. Al-Saadi, L. Choudhary, S.E. Harandi, R. Singh, Magnesium Implants: Prospects and Challenges, Materials 12 (2019) 136-156.

DOI: 10.3390/ma12010136

Google Scholar

[3] M.D. Costantino, A. Schuster, H. Helmholz, A. Meyer-Rachner, R. Willumeit-Romer, B.J.C. Luthringer-Feyerabend, Inflammatory response to magnesium-based biodegradable implant materials, Acta Biomater. 101 (2020) 598-608.

DOI: 10.1016/j.actbio.2019.10.014

Google Scholar

[4] D. Noviana, D. Paramitha, M.F. Ulum, H. Hermawan, The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats, J. Orthop. Transl. 5 (2016) 9-15.

DOI: 10.1016/j.jot.2015.08.003

Google Scholar

[5] U. Riaz, I. Shabib, W. Haider, The current trends of Mg alloys in biomedical applications-A review, J. Biomed. Mater. Res. B 107 (2019) 1970-1996.

DOI: 10.1002/jbm.b.34290

Google Scholar

[6] K. Munir, J. Lin, C. Wen, P.F.A. Wright, Y. Li, Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications, Acta Biomater. 102 (2020) 493-507.

DOI: 10.1016/j.actbio.2019.12.001

Google Scholar

[7] S. Moradnezhad, A. Razaghian, R. Taghiabadi, H.R. Abedi, A. Salandari-Rabori, M. Emamy, Effect of Ca additions on evolved microstructures and subsequent mechanical properties of a cast and hot-extruded Mg-Zn-Zr magnesium alloy, Int. J. Adv. Manuf. Tech. 104 (2019) 4265-4275.

DOI: 10.1007/s00170-019-04260-6

Google Scholar

[8] Y. Xu, J. Li, M. Qi, J. Gu, Y. Zhang, Effect of extrusion on the microstructure and corrosion behaviors of biodegradable Mg-Zn-Y-Gd-Zr alloy, J. Mater. Sci. 55 (2020) 1231-1245.

DOI: 10.1007/s10853-019-03978-8

Google Scholar

[9] L. Guo, L. Yu, Q. Zhao, X. Gong, H. Xie, G. Yuan, B. Li, X. Wan, Biodegradable JDBM coating stent has potential to be used in the treatment of benign biliary strictures, Biomed. Mater. (2021).

DOI: 10.1088/1748-605x/abda88

Google Scholar

[10] S. Nezamdoust, D. Seifzadeh, Z. Rajabalizadeh, Application of novel sol-gel composites on magnesium alloy, J. Magnes. Alloy 7 (2019) 419-432.

DOI: 10.1016/j.jma.2019.03.004

Google Scholar

[11] Z. Li, S. Sun, M. Chen, B.D. Fahlman, D. Liu, H. Bi, In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF2-coated Mg-Zn-Zr alloy as cancellous screws, Mat. Sci. Eng. C 75 (2017) 1268-1280.

DOI: 10.1016/j.msec.2017.02.168

Google Scholar

[12] Y.Z. Zhang, Y.C. Ma, M.F. Chen, J. Wei, Effects of anodizing biodegradable Mg-Zn-Zr alloy on the deposition of Ca-P coating, Surf. Coat. Tech. 228 (2013) 111-115.

DOI: 10.1016/j.surfcoat.2012.07.023

Google Scholar

[13] X. Yang, M. Li, X. Lin, L. Tan, G. Lan, L. Li, Q. Yin, H. Xia, Y. Zhang, K. Yang, Enhanced in vitro biocompatibility/bioactivity of biodegradable Mg-Zn-Zr alloy by micro-arc oxidation coating contained Mg2SiO4, Surf. Coat. Tech. 233 (2013) 65-73.

DOI: 10.1016/j.surfcoat.2013.01.052

Google Scholar

[14] X. Lin, X.M. Yang, L.L. Tan, M. Li, X. Wang, Y. Zhang, K. Yang, Z.Q. Hu, J.H. Qiu, In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy, Appl. Surf. Sci. 288 (2014) 718-726.

DOI: 10.1016/j.apsusc.2013.10.113

Google Scholar

[15] X. Li, C.L. Chu, L. Liu, X.K. Liu, J. Bai, C. Guo, F. Xue, P.H. Lin, P.K. Chu, Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires, Biomaterials 49 (2015) 135-144.

DOI: 10.1016/j.biomaterials.2015.01.060

Google Scholar

[16] H. Li, J. Wen, J. He, H. Shi, Y. Liu, Effects of Dy Addition on the Mechanical and Degradation Properties of Mg-2Zn-0.5Zr Alloy, Adv. Eng. Mater. 22 (2020) 1901360.

DOI: 10.1002/adem.201901360

Google Scholar

[17] P. Lu, L. Cao, Y. Liu, X.H. Xu, X.F. Wu, Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42, J. Biomed. Mater. Res. B 96B (2011) 101-109.

DOI: 10.1002/jbm.b.31744

Google Scholar

[18] R.C. Zeng, L.Y. Cui, K. Jiang, R. Liu, B.D. Zhao, In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly (L-lactic acid) Composite Coating on Mg–1Li–1Ca Alloy for Orthopedic Implants, Acs Appl. Mater. Inter. 8 (2016) 10014-10028.

DOI: 10.1021/acsami.6b00527

Google Scholar