[1]
S. Liang, H. Wang, Y. Li, Qin H., Z. Luo, B. Huang, X. Zhao, C. Zhao, L. Chen Rare-earth based nanomaterials and their composites as electrode materials for high performance supercapacitors: a review, Sustain. Ener. Fuels (2020) 3825-3847.
DOI: 10.1039/d0se00669f
Google Scholar
[2]
Artini C. Rare-Earth-Doped Ceria Systems and Their Performance as Solid Electrolytes: A Puzzling Tangle of Structural Issues at the Average and Local Scale, Inorg. Chem. 57 (2018) 13047−13062.
DOI: 10.1021/acs.inorgchem.8b02131
Google Scholar
[3]
F. Sartori da Silva, T. Miguel de Souza. Novel materials for solid oxide fuel cell technologies: A literature review, Inter. J. Hyd. Ener. 42 (2017) 26020-26036.
DOI: 10.1016/j.ijhydene.2017.08.105
Google Scholar
[4]
H. Zhang, J. Sun, S. Duo, X. Zhou, J. Yuan, S. Dong, X. Yang, J. Zeng, J. Jiang, L. Deng, X. Cao, Thermal and Mechanical Properties of Ta2O5 Doped La2Ce2O7 Thermal Barrier Coatings Prepared by Atmospheric Plasma Spraying, J. of the Eur. Ceram. Soc., 39 (2019), 2379–2388.
DOI: 10.1016/j.jeurceramsoc.2019.02.041
Google Scholar
[5]
M. Tauseef, M. Faisl, S. Muhammad, R. Muhammad, Novel photocatalyst and antibacterial agent; direct dual Z-scheme ZnO–CeO2-Yb2O3 heterostructured nanocomposite,Sol. Stat. Scien. 109 (2020) 106446- 106458.
DOI: 10.1016/j.solidstatesciences.2020.106446
Google Scholar
[6]
Y. Zhou, S. Li, J. Deng, L. Xiong, J. Wang, Y. Chen. Nanoscale heterogeneity and low-temperature redox property of CeO2-ZrO2-La2O3-Y2O3 quaternary solid solution, Mater. Chem. and Phys. 208 (2018) 123-131.
DOI: 10.1016/j.matchemphys.2018.01.004
Google Scholar
[7]
P. Eriksson, A. A. Tal, A. Skallberg, C. Brommesson, Z. Hu, R. D. Boyd, W. Olovsson, N. Fairley, I. A. Abrikosov, X. Zhang, K. Uvdal, Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement, Scient. Repor. 8 (2018) 1-12.
DOI: 10.1038/s41598-018-25390-z
Google Scholar
[8]
H. Li, P. Xia, S. Pan, Z. Qi, C. Fu, Z. Yu, W. Kong, Y. Chang, K. Wang, D. Wu, X. Yang, The Advances of Ceria Nanoparticles for Biomedical Applications in Orthopaedics, Intern. J. of Nanomed. 15 (2020) 7199 – 7214.
DOI: 10.2147/ijn.s270229
Google Scholar
[9]
M. Coduri, S. Checchia, M. Longhi, D. Ceresoli, M. Scavini, Rare Earth Doped Ceria: The Complex Connection Between Structure and Properties, Front. Chem. 6 (2018). 526.
DOI: 10.3389/fchem.2018.00526
Google Scholar
[10]
C. Artini, S. Presto, M. Viviani, S. Massardo, M. M. Carnasciali, L. Gigli, M. Pani, The role of defects association in structural and transport properties of the Ce1-x (Nd0.74Tm0.26)xO2- x /2 system, J. of Ener. Chem. 60 (2021) 494-502.
DOI: 10.1016/j.jechem.2020.11.030
Google Scholar
[11]
R. Schmitt, A. Nenning, O. Kraynis, R. Korobko, A. I. Frenkel, I. Lubomirsky, S. M. Hailef, Je. L. M. Rupp, A review of defect structure and chemistry in ceria and its solid solutions, Chem. Soc. Rev., 49 (2020), 554-592.
DOI: 10.1039/c9cs00588a
Google Scholar
[12]
J. Gambogi; U.S. Geological Survey, Mineral Commodity Summaries 2017; U.S. Geological Survey: Reston, VA, USA, 2017; 202.
Google Scholar
[13]
E. R. Andrievska, O. A. Kornienko, A. V. Sameliuk, A. Sayir, Phase Relation Studies in the CeO2–La2O3 System at 1100–1500 °С, J. Eur. Ceram. Soc. 31 (2011) 1277–1283.
DOI: 10.1016/j.jeurceramsoc.2010.05.024
Google Scholar
[14]
E. R. Andrievska, O.A. Kornienko, A.V. Sameliuk, A. Sair, Phase relation studies in the CeO2-Eu2O3 system at 1500 to 600 °C in air, J. Eur. Ceram. Soc., 40 (2020) 751–758.
DOI: 10.1016/j.jeurceramsoc.2019.10.045
Google Scholar
[15]
E. R. Аndrievskaya, O. A. Kornienko, O. І. Bykov, A. V. Sameliuk, Z. D. Bohatyriova Interaction of ceria and ytterbia in air within temperature range 1500 –600 °C, J. Eur. Ceram. Soc., 39 (2019) 2930–2935.
DOI: 10.1016/j.jeurceramsoc.2019.03.021
Google Scholar
[16]
O. R. Аndrievskaya, O. А. Коrniienko, O. І. Bykov, А. V. Sameliuk, Z. D. Bohatyriova, Interaction of ceria and erbia in air within temperature range 1500–600 °C, J. Eur. Ceram. Soc., 40 (2020) 3098–3103.
DOI: 10.1016/j.jeurceramsoc.2020.03.002
Google Scholar
[17]
O. Samoilova, G. Mikhalov, L. Makrvets, Thermodynamic description of phase equilibria in the Cu2O–CeO2–Ce2O3–La2O3 system, Bull. of the South Ural Stat. Univers. Ser. Metall. 17 (2017), 16–23.
DOI: 10.14529/met170102
Google Scholar
[18]
M. Hrovat, Z. Samardžzija, J. Holc, S. Bernik, Subsolidus phase equilibria in the La2O3–Ga2O3–CeO2 system, J. of Mater. Resear. 14 (1999) 4460 – 4462.
DOI: 10.1557/jmr.1999.0603
Google Scholar
[19]
M. A. Małecka, L. Kępiński, Structural characterization of nano-sized Ce0.5Ln0.5O1.75 (Ln = Yb, Lu) mixed oxides, J. of Microsc., 237 (2010) 391 – 394.
DOI: 10.1111/j.1365-2818.2009.03268.x
Google Scholar
[20]
B. P. Mandal, V. Grover, M. Roy, A. K. Tayagi, X-Ray diffraction and raman spectroscopic Investigation on the phase relation in Yb2O3- and Tm2O3- substituted CeO2, J. of Amer. Soc., 90 (2007) 2961 – 2965.
Google Scholar
[21]
O. A. Kornienko, O.R. Andrievskaya, H.K. Barshchevskaya, Phase relations in the system ternary based on ceria, zirconia and ytterbia at 1500° С, // J. of Chem. and Technol. 28 (2021) 142-152.
Google Scholar
[22]
M. Ilatovskaia, S. Sun, I. Saenko, G. Savinykh, O. Fabrichnaya Experimental Investigation of Phase Relations in the ZrO2-La2O3-Yb2O3 System, J. of Phas. Equilib. and Diff. 41 (2020) 311-328.
DOI: 10.1007/s11669-020-00790-9
Google Scholar
[23]
O. Chudinivych, O.A. Kornienko, V. Yurbanovich Interaction of lanthanum and ytterbia at 1600 °C, The digest summarizes articles on results of the implementation of joint scientific and scientific-technical projects of 2016-217.
Google Scholar
[24]
J. Coutures, A. Rouanet, R.Verges, M. Foex, Etude a haute temperature des systems formes par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I: Diagrammes de phases (1400 oC < T < T Liquide), J. Solid State Chem. 17 (1976) 172–182.
DOI: 10.1016/0022-4596(76)90218-8
Google Scholar
[25]
Hk. Muller–Buschbaum, Chr. L. Teske, Zur Kenntnis der Kristallstruktur von LaYbO3, Z. Anorg. Allg. Chem. 369 (1969) 255–264.
DOI: 10.1002/zaac.19693690316
Google Scholar
[26]
Hk. Muller–Buschbaum, Untersuchung am System La2O3–Yb2O3, Z. Anorg. Allg. Chem. Bd. 369 (1969) 249–254.
DOI: 10.1002/zaac.19693690315
Google Scholar
[27]
J. P. Traverse, J. Coutures, M. Foex , Thermal analysis, Compt. Rend. Acad. Sci. 1968. 924–935.
Google Scholar
[28]
O. V. Chudinivych, O.R. Andrievskaya, Z. D. Bohatyriova, Interaction of lanthanum and ytterbia at 1600 °C 1500 оС, Curr. Prob. of Phys. Mater. Sci., 23 (2014) 12–23.
Google Scholar
[29]
O. A. Korniienko, O. I. Bykov, A. V. Sameliuk, H. K. Barshchevskaya, Isothermal section at 1500 °C for the СeO2–La2O3–Sm2O3 system, J. of Chem. and Techn., 29 (2021) 200-210.
Google Scholar
[30]
О. R. Аndrievskaya, O.A. Kornienko, О. І. Bykov, O. V. Chudinovich, L.N. Spasonova, The interaction between cerium dioxide, lanthanum and europium oxides at 1500° C, Proc. and Appl. of Ceram. 15 (2021) 32–39.
DOI: 10.2298/pac2101032a
Google Scholar
[31]
O.A. Korniienko, Bykov O.I., Sameljuk A.V., Bataiev Yu.M., Yushkevyc S.V. Phase equilibria in the CeO2–La2O3–Gd2O3 system at 1250 and 1500 °С, Intern. Res. J. of Multidiscipl. Techn., 3 (2021) P 17 – 3.
Google Scholar
[32]
O.A. Kornienko, A.V. Sameljuk, О. І. Bykov, Yu.V. Yurchenko, A. K. Barshchevskaya, Phase Relation Studies in the CeO2–La2O3–Er2O3 System at 1500°C, J. Eur. Ceram. Soc., 40 (2020) 4184-4190.
DOI: 10.1016/j.jeurceramsoc.2020.04.042
Google Scholar