Phase Equilibrium in the Ternary CeО2-La2O3-Yb2O3 System at 1500 °С

Article Preview

Abstract:

Materials based on cerium oxides and REE are perspective for use in medicine, energy and mechanical engineering due to the uniqueness of their authorities. Stationary system diagrams are the physicochemical basis for the creation of such materials as solid electrolytes for fuel comics, oxygen gas sensors, catalyst carriers, protected coatings for alloys, etc. In this work, phase equilibria and structural transformations in the system CeO2-La2O3-Yb2O3 at a temperature of 1500 oС in all international concentrations are investigated by the methods of microstistructural and X - ray phase analysis. It is established that in the triple system CeO2-La2O3-Yb2O3 fields of solid solutions based on cubic (F) modification of the structure of the structure of fluorite CeO2, monoclinic (B) and cubic (C) modification of Yb2O3 and hexagonal (A) modification of La2O3 (R) are used, which crystallizes in a Perovski-type structure with rhombic curvatures. It was found that the rarefaction of CeO2 in the crystal lattice of the ordered phase with the structure of the perovskite type LaYbO3 (R) is ~ 3 mol. %. Isothermal review of the state diagram of the systems CeO2-La2O3-Yb2O3 at reveals the presence of two three-phase (F + C + R), (A + R + F) and five two-phase (A + F), (A + R), (R + C), (F + R), (F + C) regions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 331)

Pages:

159-172

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Liang, H. Wang, Y. Li, Qin H., Z. Luo, B. Huang, X. Zhao, C. Zhao, L. Chen Rare-earth based nanomaterials and their composites as electrode materials for high performance supercapacitors: a review, Sustain. Ener. Fuels (2020) 3825-3847.

DOI: 10.1039/d0se00669f

Google Scholar

[2] Artini C. Rare-Earth-Doped Ceria Systems and Their Performance as Solid Electrolytes: A Puzzling Tangle of Structural Issues at the Average and Local Scale, Inorg. Chem. 57 (2018) 13047−13062.

DOI: 10.1021/acs.inorgchem.8b02131

Google Scholar

[3] F. Sartori da Silva, T. Miguel de Souza. Novel materials for solid oxide fuel cell technologies: A literature review, Inter. J. Hyd. Ener. 42 (2017) 26020-26036.

DOI: 10.1016/j.ijhydene.2017.08.105

Google Scholar

[4] H. Zhang, J. Sun, S. Duo, X. Zhou, J. Yuan, S. Dong, X. Yang, J. Zeng, J. Jiang, L. Deng, X. Cao, Thermal and Mechanical Properties of Ta2O5 Doped La2Ce2O7 Thermal Barrier Coatings Prepared by Atmospheric Plasma Spraying, J. of the Eur. Ceram. Soc., 39 (2019), 2379–2388.

DOI: 10.1016/j.jeurceramsoc.2019.02.041

Google Scholar

[5] M. Tauseef, M. Faisl, S. Muhammad, R. Muhammad, Novel photocatalyst and antibacterial agent; direct dual Z-scheme ZnO–CeO2-Yb2O3 heterostructured nanocomposite,Sol. Stat. Scien. 109 (2020) 106446- 106458.

DOI: 10.1016/j.solidstatesciences.2020.106446

Google Scholar

[6] Y. Zhou, S. Li, J. Deng, L. Xiong, J. Wang, Y. Chen. Nanoscale heterogeneity and low-temperature redox property of CeO2-ZrO2-La2O3-Y2O3 quaternary solid solution, Mater. Chem. and Phys. 208 (2018) 123-131.

DOI: 10.1016/j.matchemphys.2018.01.004

Google Scholar

[7] P. Eriksson, A. A. Tal, A. Skallberg, C. Brommesson, Z. Hu, R. D. Boyd, W. Olovsson, N. Fairley, I. A. Abrikosov, X. Zhang, K. Uvdal, Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement, Scient. Repor. 8 (2018) 1-12.

DOI: 10.1038/s41598-018-25390-z

Google Scholar

[8] H. Li, P. Xia, S. Pan, Z. Qi, C. Fu, Z. Yu, W. Kong, Y. Chang, K. Wang, D. Wu, X. Yang, The Advances of Ceria Nanoparticles for Biomedical Applications in Orthopaedics, Intern. J. of Nanomed. 15 (2020) 7199 – 7214.

DOI: 10.2147/ijn.s270229

Google Scholar

[9] M. Coduri, S. Checchia, M. Longhi, D. Ceresoli, M. Scavini, Rare Earth Doped Ceria: The Complex Connection Between Structure and Properties, Front. Chem. 6 (2018). 526.

DOI: 10.3389/fchem.2018.00526

Google Scholar

[10] C. Artini, S. Presto, M. Viviani, S. Massardo, M. M. Carnasciali, L. Gigli, M. Pani, The role of defects association in structural and transport properties of the Ce1-x (Nd0.74Tm0.26)xO2- x /2 system, J. of Ener. Chem. 60 (2021) 494-502.

DOI: 10.1016/j.jechem.2020.11.030

Google Scholar

[11] R. Schmitt, A. Nenning, O. Kraynis, R. Korobko, A. I. Frenkel, I. Lubomirsky, S. M. Hailef, Je. L. M. Rupp, A review of defect structure and chemistry in ceria and its solid solutions, Chem. Soc. Rev., 49 (2020), 554-592.

DOI: 10.1039/c9cs00588a

Google Scholar

[12] J. Gambogi; U.S. Geological Survey, Mineral Commodity Summaries 2017; U.S. Geological Survey: Reston, VA, USA, 2017; 202.

Google Scholar

[13] E. R. Andrievska, O. A. Kornienko, A. V. Sameliuk, A. Sayir, Phase Relation Studies in the CeO2–La2O3 System at 1100–1500 °С, J. Eur. Ceram. Soc. 31 (2011) 1277–1283.

DOI: 10.1016/j.jeurceramsoc.2010.05.024

Google Scholar

[14] E. R. Andrievska, O.A. Kornienko, A.V. Sameliuk, A. Sair, Phase relation studies in the CeO2-Eu2O3 system at 1500 to 600 °C in air, J. Eur. Ceram. Soc., 40 (2020) 751–758.

DOI: 10.1016/j.jeurceramsoc.2019.10.045

Google Scholar

[15] E. R. Аndrievskaya, O. A. Kornienko, O. І. Bykov, A. V. Sameliuk, Z. D. Bohatyriova Interaction of ceria and ytterbia in air within temperature range 1500 –600 °C, J. Eur. Ceram. Soc., 39 (2019) 2930–2935.

DOI: 10.1016/j.jeurceramsoc.2019.03.021

Google Scholar

[16] O. R. Аndrievskaya, O. А. Коrniienko, O. І. Bykov, А. V. Sameliuk, Z. D. Bohatyriova, Interaction of ceria and erbia in air within temperature range 1500–600 °C, J. Eur. Ceram. Soc., 40 (2020) 3098–3103.

DOI: 10.1016/j.jeurceramsoc.2020.03.002

Google Scholar

[17] O. Samoilova, G. Mikhalov, L. Makrvets, Thermodynamic description of phase equilibria in the Cu2O–CeO2–Ce2O3–La2O3 system, Bull. of the South Ural Stat. Univers. Ser. Metall. 17 (2017), 16–23.

DOI: 10.14529/met170102

Google Scholar

[18] M. Hrovat, Z. Samardžzija, J. Holc, S. Bernik, Subsolidus phase equilibria in the La2O3–Ga2O3–CeO2 system, J. of Mater. Resear. 14 (1999) 4460 – 4462.

DOI: 10.1557/jmr.1999.0603

Google Scholar

[19] M. A. Małecka, L. Kępiński, Structural characterization of nano-sized Ce0.5Ln0.5O1.75 (Ln = Yb, Lu) mixed oxides, J. of Microsc., 237 (2010) 391 – 394.

DOI: 10.1111/j.1365-2818.2009.03268.x

Google Scholar

[20] B. P. Mandal, V. Grover, M. Roy, A. K. Tayagi, X-Ray diffraction and raman spectroscopic Investigation on the phase relation in Yb2O3- and Tm2O3- substituted CeO2, J. of Amer. Soc., 90 (2007) 2961 – 2965.

Google Scholar

[21] O. A. Kornienko, O.R. Andrievskaya, H.K. Barshchevskaya, Phase relations in the system ternary based on ceria, zirconia and ytterbia at 1500° С, // J. of Chem. and Technol. 28 (2021) 142-152.

Google Scholar

[22] M. Ilatovskaia, S. Sun, I. Saenko, G. Savinykh, O. Fabrichnaya Experimental Investigation of Phase Relations in the ZrO2-La2O3-Yb2O3 System, J. of Phas. Equilib. and Diff. 41 (2020) 311-328.

DOI: 10.1007/s11669-020-00790-9

Google Scholar

[23] O. Chudinivych, O.A. Kornienko, V. Yurbanovich Interaction of lanthanum and ytterbia at 1600 °C, The digest summarizes articles on results of the implementation of joint scientific and scientific-technical projects of 2016-217.

Google Scholar

[24] J. Coutures, A. Rouanet, R.Verges, M. Foex, Etude a haute temperature des systems formes par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I: Diagrammes de phases (1400 oC < T < T Liquide), J. Solid State Chem. 17 (1976) 172–182.

DOI: 10.1016/0022-4596(76)90218-8

Google Scholar

[25] Hk. Muller–Buschbaum, Chr. L. Teske, Zur Kenntnis der Kristallstruktur von LaYbO3, Z. Anorg. Allg. Chem. 369 (1969) 255–264.

DOI: 10.1002/zaac.19693690316

Google Scholar

[26] Hk. Muller–Buschbaum, Untersuchung am System La2O3–Yb2O3, Z. Anorg. Allg. Chem. Bd. 369 (1969) 249–254.

DOI: 10.1002/zaac.19693690315

Google Scholar

[27] J. P. Traverse, J. Coutures, M. Foex , Thermal analysis, Compt. Rend. Acad. Sci. 1968. 924–935.

Google Scholar

[28] O. V. Chudinivych, O.R. Andrievskaya, Z. D. Bohatyriova, Interaction of lanthanum and ytterbia at 1600 °C 1500 оС, Curr. Prob. of Phys. Mater. Sci., 23 (2014) 12–23.

Google Scholar

[29] O. A. Korniienko, O. I. Bykov, A. V. Sameliuk, H. K. Barshchevskaya, Isothermal section at 1500 °C for the СeO2–La2O3–Sm2O3 system, J. of Chem. and Techn., 29 (2021) 200-210.

Google Scholar

[30] О. R. Аndrievskaya, O.A. Kornienko, О. І. Bykov, O. V. Chudinovich, L.N. Spasonova, The interaction between cerium dioxide, lanthanum and europium oxides at 1500° C, Proc. and Appl. of Ceram. 15 (2021) 32–39.

DOI: 10.2298/pac2101032a

Google Scholar

[31] O.A. Korniienko, Bykov O.I., Sameljuk A.V., Bataiev Yu.M., Yushkevyc S.V. Phase equilibria in the CeO2–La2O3–Gd2O3 system at 1250 and 1500 °С, Intern. Res. J. of Multidiscipl. Techn., 3 (2021) P 17 – 3.

Google Scholar

[32] O.A. Kornienko, A.V. Sameljuk, О. І. Bykov, Yu.V. Yurchenko, A. K. Barshchevskaya, Phase Relation Studies in the CeO2–La2O3–Er2O3 System at 1500°C, J. Eur. Ceram. Soc., 40 (2020) 4184-4190.

DOI: 10.1016/j.jeurceramsoc.2020.04.042

Google Scholar