New Low-Temperature Method of Synthesis of Boron Carbide Matrix Ceramics Ultra-Dispersive Powders and their Spark Plasma Sintering

Article Preview

Abstract:

The ultra-dispersive powders of pre-ceramic precursors for boron carbide based composites were obtained by relatively low-temperature (at 200 – 1000 °C) synthesis from liquid charges containing available compounds such as salts and oxides. Boron carbide matrix ceramics were compacted by their reactive spark plasma sintering (SPS) at 1500 – 1700 °C. It is noted that the X-ray diffraction (XRD) peaks corresponding (m)ZrO2 and WC phases presented in the synthetic pre-ceramic precursors disappear after the SPS is conducted at 1500 °C. It is established that the addition of tungsten and cobalt compounds promotes both the low-temperature synthesis of ceramic components and sintering processes of their powders. Energy dispersive X-ray (EDX) analysis showed that the ceramics contain a small amount of Co (0.8 – 2 wt.%). The density of samples of cobalt-containing ceramics B4C–ZrB2–W2B5–Co is higher compared to that of cobalt-free ceramics B4C–ZrB2–W2B5.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 331)

Pages:

173-184

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.A. Munir, U. Anselmi–Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci. 41 (2006) 763-777.

DOI: 10.1007/s10853-006-6555-2

Google Scholar

[2] K. Sairam, J.K. Sonber, T.S.R.C. Murthy, C. Subramanian, R.K. Fotedar, P. Nanekar, R.C. Hubli, Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide, Int. J. Ref. Met. & Hard Mater. 42 (2014) 185-192.

DOI: 10.1016/j.ijrmhm.2013.09.004

Google Scholar

[3] N. Jalabadze, L. Nadaraia, A. Mikeladze, R. Chedia, T. Kukava, L. Khundadze, Spark plasma synthesis (SPS) device for sintering of nanomaterials, Nanotech. 1 (2009) 67-70.

DOI: 10.1109/tns.2009.2016961

Google Scholar

[4] L. Nadaraia, N.  Jalabadze, L. Khundadze, L. Rurua, M. Japaridze, R. Chedia, Effects of graphene on morphology, fracture toughness, and electrical conductivity of titanium dioxide, Diam. & Rel. Mater. 114 (2021) 108319 (1-10).

DOI: 10.1016/j.diamond.2021.108319

Google Scholar

[5] Z. Liu, X. Deng, J. Li, Y. Sun, S. Ran, Effects of B4C particle size on the microstructures and mechanical properties of hot-pressed B4C–TiB2 composites, Ceram. Int. 44 (2018) 21415-21420.

DOI: 10.1016/j.ceramint.2018.08.200

Google Scholar

[6] J. Wu, B. Niu, F. Zhang, L. Lei, J. Zhang, L. Ren, W. Wang, Z. Fu:,  Effect of titanium diboride on the homogeneity of boron carbide ceramic by flash spark plasma sintering, Ceram. Int. 44 (2018) 15323-15330.

DOI: 10.1016/j.ceramint.2018.05.179

Google Scholar

[7] S.G. Huang, K. Vanmeensel, O.J.A. Malek, O. van der Biest, J. Vleugels, Microstructure and mechanical properties of pulsed electric current sintered B4C–TiB2 composites, Mater. Sci. Eng. A 528 (2011) 1302-1309.

DOI: 10.1016/j.msea.2010.10.022

Google Scholar

[8] S. Failla, C. Melandri, L. Zoli, G. Zucca, D. Sciti, Hard and easy sinterable B4C–TiB2-based composites doped with WC, J. Eur. Ceram. Soc. 38 (2018) 3089-3095.

DOI: 10.1016/j.jeurceramsoc.2018.02.041

Google Scholar

[9] C. Xu, Y. Cai, K. Flodstrom, Z. Li, S. Esmaeilzadeh, G.J. Zhang, Spark plasma sintering of B4C ceramics: The effects of milling medium and TiB2 addition, Int. J. Ref. Met. & Hard Mater. 30 (2012) 139-144.

DOI: 10.1016/j.ijrmhm.2011.07.016

Google Scholar

[10] L. Nikzad, R. Orru, R. Licheri, G. Cao, Fabrication and formation mechanism of B4C–TiB2 composite by reactive spark plasma sintering using unmilled and mechanically activated reactants, J. Am. Ceram. Soc. 95 (2012) 3463-3471.

DOI: 10.1111/j.1551-2916.2012.05416.x

Google Scholar

[11] M. Saeedi Heydari, H.R. Baharvandi, Effect of different additives on the sintering ability and the properties of B4C–TiB2 composites, Int. J. Ref. Met. & Hard Mater. 51 (2015) 61-69.

DOI: 10.1016/j.ijrmhm.2015.02.014

Google Scholar

[12] G. Liu, S. Chen, Y. Zhao, Y. Fu, Y. Wang, The Effects of transition metal oxides (Me = Ti, Zr, Nb, and Ta) on the mechanical properties and interfaces of B4C ceramics fabricated via pressureless sintering, Coatings 10 (2020) 1253 (1-13).

DOI: 10.3390/coatings10121253

Google Scholar

[13] H. Hofmann, G. Petzow, Structure and properties of reaction hot-pressed B4C–TiB2–W2B5 materials, J. Less-Comm. Met. 117 (1986) 121-127.

DOI: 10.1016/0022-5088(86)90020-2

Google Scholar

[14] J. Deng, J. Zhou, Y. Feng, Z. Ding, Microstructure and mechanical properties of hot-pressed B4C/(W,Ti)C ceramic composites, Ceram. Int. 28 (2002) 425-430.

DOI: 10.1016/s0272-8842(01)00113-4

Google Scholar

[15] O.N. Grigor'ev, E.V. Prilutskii, E.G. Trunova, I.V. Kozak, Structure and properties of ceramics based on tungsten and titanium borides and boron carbide, Powd. Metall. & Met. Ceram. 41 (2002) 142-146.

Google Scholar

[16] R. Gorle, V.K, S.R. Bakshi, Reactive spark plasma sintering of B4C composite at low temperature using mechanically milled B4C–Ti–B mixtures, Ceram. Int. 21 (2021) 26134-26143.

DOI: 10.1016/j.ceramint.2021.06.021

Google Scholar

[17] G. Wen, S.B. Li, B.S. Zhang, Z.X. Guo, Processing of in situ toughened B–W–C composites by reaction hot pressing of B4C and WC, Scripta Mater. 43 (2000) 853-857.

DOI: 10.1016/s1359-6462(00)00502-9

Google Scholar

[18] N. Hosseini, A. Fazili , M.R. Derakhshandeh, L. Nikzad, M. Bahamirian, M. Razavi, Effect of Co addition on microstructural and mechanical properties of WC–B4C–SiC composites, Ceram. Int. 47 (2021) 15771-15782.

DOI: 10.1016/j.ceramint.2021.02.149

Google Scholar

[19] Z. Zakhariev, D. Radev, Properties of polycrystalline boron carbide sintered in the presence of W2B5 without pressing. J. Mater. Sci. Lett. 7 (1988) 695-696.

DOI: 10.1007/bf00722070

Google Scholar

[20] K.-F. Cai, C.-W. Nan, The influence of W2B5 addition on microstructure and thermoelectric properties of B4C ceramic, Ceram. Int. 26 (2000) 523-527.

DOI: 10.1016/s0272-8842(99)00089-9

Google Scholar

[21] D. Pan, S. Li, X. Zhang, B. Pan, S. Zhou, Y. Fu, Effect of graphite content on properties of B4C–W2B5 ceramic composites by in situ reaction of B–Gr–WC, J. Am. Ceram. Soc. 10 (2018) 3617-3626.

DOI: 10.1111/jace.15474

Google Scholar

[22] J. Yin, Z. Huang, X. Liu, Z. Zhang, D. Jiang, Microstructure, mechanical and thermal properties of in situ toughened boron carbide-based ceramic composites co-doped with tungsten carbide and pyrolytic carbon, J. Eur. Ceram. Soc. 33 (2013) 1647-1654.

DOI: 10.1016/j.jeurceramsoc.2013.01.009

Google Scholar

[23] D.D. Nesmelov, S.S. Ordan'yan, Yu.P. Udalov, Structure and mechanical properties of hot-pressed composite ceramics W2B5–ZrB2–SiC–B4C, Ref. & Ind. Ceram. 62 (2021) 202-207.

DOI: 10.1007/s11148-021-00583-8

Google Scholar

[24] L. Chkhartishvili, A. Mikeladze, R. Chedia, O. Tsagareishvili, N. Jalabadze, N. Barbakadze, V. Kvatchadze, M. Darchiashvili, K. Sarajishvili, L. Rurua, T. Korkia, R. Tsiskarishvili, Boron carbide based nanocomposites with advanced mechanical properties, in: Proc. 8th Int. Conf. Exh. Adv. Nano Mater., IAEMM, Ottawa, 2021, pp.1-16.

DOI: 10.1016/j.matpr.2021.08.013

Google Scholar

[25] L. Chkhartishvili, O. Tsagareishvili, A. Mikeladze, R. Chedia, V. Kvatchadze, V. Ugrekhelidze, Highly stable boron carbide based nanocomposites, in: O.V. Kharissova, L.M.T. Martinez, B.I. Kharisov (Eds.), Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, Springer Nature, Cham, 2021, Ch. 15, pp.327-351.

DOI: 10.1007/978-3-030-36268-3_81

Google Scholar

[26] L. Chkhartishvili, A. Mikeladze, O. Tsagareishvili, A. Gachechiladze, A. Oakley, B. Margiev, Boron-containing nanocrystalline ceramic and metal-ceramic materials, in: Ch.M. Hussain (Ed.), Handbook of Nanomaterials for Industrial Applications, Elsevier, Amsterdam, 2018, Ch. 2, pp.13-35.

DOI: 10.1016/b978-0-12-813351-4.00002-x

Google Scholar

[27] L. Chkhartishvili, L. Antashvili, L. Dalakishvili, R. Chedia, O. Tsagareishvili, A. Mikeladze, On modeling of synthesis process of boron carbide based nanocomposites, Condensed Matter, 6(1) (2021) 3 (1-13).

DOI: 10.3390/condmat6010003

Google Scholar

[28] O. Tsagareishvili, A. Mikeladze, R. Chedia, L. Chkhartishvili, Method of obtaining boron carbide based hard nanocomposite materials, National Centre for Intellectual Property of Georgia Geo Patent, – Patent # GE P 2018 6709 B (2018).

Google Scholar

[29] A. Mikeladze, O. Tsagareishvili, L. Chkhartishvili, R. Chedia, M. Darchiashvili, Production of titanium-containing metal-ceramic composites based on boron carbide in the nanocrystalline state, Adv. Appl. Ceram. 118 (2019) 196-208.

DOI: 10.1080/17436753.2019.1611088

Google Scholar

[30] A. Mikeladze, O. Tsagareishvili, L. Chkhartishvili, R. Chedia, Obtaining of some boron containing and related nanocrystalline systems from solutions and suspensions, in: Proc. Book Int. Symp. Boron, Boren, Nevsehir, 2019, pp.181-191.

DOI: 10.4024/n27ba19a.ntp.15.03

Google Scholar

[31] N. Barbakadze, K. Sarajishvili, R. Chedia, L. Chkhartishvili, O. Tsagareishvili, A. Mikeladze, M. Darchiashvili, V. Ugrekhelidze, Obtaining of ultrafine powders of some boron carbide based nanocomposites using liquid precursors, Nanotechnology Perceptions 15 (2019) 243-256.

DOI: 10.4024/n27ba19a.ntp.15.03

Google Scholar

[32] L. Chkhartishvili, A. Mikeladze, R. Chedia, O. Tsagareishvili, N. Barbakadze, K. Sarajishvili, M. Darchiashvili, V. Ugrekhelidze, T. Korkia, Synthesizing fine-grained powders of complex compositions B4C–TiB2–WC–Co, Solid State Sci. 108 (2020) 106439 (1-8).

DOI: 10.1016/j.solidstatesciences.2020.106439

Google Scholar

[33] N. Barbakadze, L. Chkhartishvili, A. Mikeladze, O. Tsagareishvili, K. Sarajishvili, T. Korkia, M. Darchiashvili, L. Rurua, N. Jalabadze, R. Chedia, Method of obtaining multicomponent fine-grained powders for boron carbide matrix ceramics production, Mater. Today Proc. https://doi.org/10.1016/j.matpr.2021.08.013 (2021) 1-9.

DOI: 10.1016/j.matpr.2021.08.013

Google Scholar

[34] L. Silvestroni, S. Failla, N. Gilli, C. Melandri, U. Savaci, S. Turan, D. Sciti, Disclosing small scale length properties in core–shell structured B4C–TiB2 composites, Mater. & Des. 197 (2021) 109204 (1-14).

DOI: 10.1016/j.matdes.2020.109204

Google Scholar