[1]
Z.A. Munir, U. Anselmi–Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci. 41 (2006) 763-777.
DOI: 10.1007/s10853-006-6555-2
Google Scholar
[2]
K. Sairam, J.K. Sonber, T.S.R.C. Murthy, C. Subramanian, R.K. Fotedar, P. Nanekar, R.C. Hubli, Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide, Int. J. Ref. Met. & Hard Mater. 42 (2014) 185-192.
DOI: 10.1016/j.ijrmhm.2013.09.004
Google Scholar
[3]
N. Jalabadze, L. Nadaraia, A. Mikeladze, R. Chedia, T. Kukava, L. Khundadze, Spark plasma synthesis (SPS) device for sintering of nanomaterials, Nanotech. 1 (2009) 67-70.
DOI: 10.1109/tns.2009.2016961
Google Scholar
[4]
L. Nadaraia, N. Jalabadze, L. Khundadze, L. Rurua, M. Japaridze, R. Chedia, Effects of graphene on morphology, fracture toughness, and electrical conductivity of titanium dioxide, Diam. & Rel. Mater. 114 (2021) 108319 (1-10).
DOI: 10.1016/j.diamond.2021.108319
Google Scholar
[5]
Z. Liu, X. Deng, J. Li, Y. Sun, S. Ran, Effects of B4C particle size on the microstructures and mechanical properties of hot-pressed B4C–TiB2 composites, Ceram. Int. 44 (2018) 21415-21420.
DOI: 10.1016/j.ceramint.2018.08.200
Google Scholar
[6]
J. Wu, B. Niu, F. Zhang, L. Lei, J. Zhang, L. Ren, W. Wang, Z. Fu:, Effect of titanium diboride on the homogeneity of boron carbide ceramic by flash spark plasma sintering, Ceram. Int. 44 (2018) 15323-15330.
DOI: 10.1016/j.ceramint.2018.05.179
Google Scholar
[7]
S.G. Huang, K. Vanmeensel, O.J.A. Malek, O. van der Biest, J. Vleugels, Microstructure and mechanical properties of pulsed electric current sintered B4C–TiB2 composites, Mater. Sci. Eng. A 528 (2011) 1302-1309.
DOI: 10.1016/j.msea.2010.10.022
Google Scholar
[8]
S. Failla, C. Melandri, L. Zoli, G. Zucca, D. Sciti, Hard and easy sinterable B4C–TiB2-based composites doped with WC, J. Eur. Ceram. Soc. 38 (2018) 3089-3095.
DOI: 10.1016/j.jeurceramsoc.2018.02.041
Google Scholar
[9]
C. Xu, Y. Cai, K. Flodstrom, Z. Li, S. Esmaeilzadeh, G.J. Zhang, Spark plasma sintering of B4C ceramics: The effects of milling medium and TiB2 addition, Int. J. Ref. Met. & Hard Mater. 30 (2012) 139-144.
DOI: 10.1016/j.ijrmhm.2011.07.016
Google Scholar
[10]
L. Nikzad, R. Orru, R. Licheri, G. Cao, Fabrication and formation mechanism of B4C–TiB2 composite by reactive spark plasma sintering using unmilled and mechanically activated reactants, J. Am. Ceram. Soc. 95 (2012) 3463-3471.
DOI: 10.1111/j.1551-2916.2012.05416.x
Google Scholar
[11]
M. Saeedi Heydari, H.R. Baharvandi, Effect of different additives on the sintering ability and the properties of B4C–TiB2 composites, Int. J. Ref. Met. & Hard Mater. 51 (2015) 61-69.
DOI: 10.1016/j.ijrmhm.2015.02.014
Google Scholar
[12]
G. Liu, S. Chen, Y. Zhao, Y. Fu, Y. Wang, The Effects of transition metal oxides (Me = Ti, Zr, Nb, and Ta) on the mechanical properties and interfaces of B4C ceramics fabricated via pressureless sintering, Coatings 10 (2020) 1253 (1-13).
DOI: 10.3390/coatings10121253
Google Scholar
[13]
H. Hofmann, G. Petzow, Structure and properties of reaction hot-pressed B4C–TiB2–W2B5 materials, J. Less-Comm. Met. 117 (1986) 121-127.
DOI: 10.1016/0022-5088(86)90020-2
Google Scholar
[14]
J. Deng, J. Zhou, Y. Feng, Z. Ding, Microstructure and mechanical properties of hot-pressed B4C/(W,Ti)C ceramic composites, Ceram. Int. 28 (2002) 425-430.
DOI: 10.1016/s0272-8842(01)00113-4
Google Scholar
[15]
O.N. Grigor'ev, E.V. Prilutskii, E.G. Trunova, I.V. Kozak, Structure and properties of ceramics based on tungsten and titanium borides and boron carbide, Powd. Metall. & Met. Ceram. 41 (2002) 142-146.
Google Scholar
[16]
R. Gorle, V.K, S.R. Bakshi, Reactive spark plasma sintering of B4C composite at low temperature using mechanically milled B4C–Ti–B mixtures, Ceram. Int. 21 (2021) 26134-26143.
DOI: 10.1016/j.ceramint.2021.06.021
Google Scholar
[17]
G. Wen, S.B. Li, B.S. Zhang, Z.X. Guo, Processing of in situ toughened B–W–C composites by reaction hot pressing of B4C and WC, Scripta Mater. 43 (2000) 853-857.
DOI: 10.1016/s1359-6462(00)00502-9
Google Scholar
[18]
N. Hosseini, A. Fazili , M.R. Derakhshandeh, L. Nikzad, M. Bahamirian, M. Razavi, Effect of Co addition on microstructural and mechanical properties of WC–B4C–SiC composites, Ceram. Int. 47 (2021) 15771-15782.
DOI: 10.1016/j.ceramint.2021.02.149
Google Scholar
[19]
Z. Zakhariev, D. Radev, Properties of polycrystalline boron carbide sintered in the presence of W2B5 without pressing. J. Mater. Sci. Lett. 7 (1988) 695-696.
DOI: 10.1007/bf00722070
Google Scholar
[20]
K.-F. Cai, C.-W. Nan, The influence of W2B5 addition on microstructure and thermoelectric properties of B4C ceramic, Ceram. Int. 26 (2000) 523-527.
DOI: 10.1016/s0272-8842(99)00089-9
Google Scholar
[21]
D. Pan, S. Li, X. Zhang, B. Pan, S. Zhou, Y. Fu, Effect of graphite content on properties of B4C–W2B5 ceramic composites by in situ reaction of B–Gr–WC, J. Am. Ceram. Soc. 10 (2018) 3617-3626.
DOI: 10.1111/jace.15474
Google Scholar
[22]
J. Yin, Z. Huang, X. Liu, Z. Zhang, D. Jiang, Microstructure, mechanical and thermal properties of in situ toughened boron carbide-based ceramic composites co-doped with tungsten carbide and pyrolytic carbon, J. Eur. Ceram. Soc. 33 (2013) 1647-1654.
DOI: 10.1016/j.jeurceramsoc.2013.01.009
Google Scholar
[23]
D.D. Nesmelov, S.S. Ordan'yan, Yu.P. Udalov, Structure and mechanical properties of hot-pressed composite ceramics W2B5–ZrB2–SiC–B4C, Ref. & Ind. Ceram. 62 (2021) 202-207.
DOI: 10.1007/s11148-021-00583-8
Google Scholar
[24]
L. Chkhartishvili, A. Mikeladze, R. Chedia, O. Tsagareishvili, N. Jalabadze, N. Barbakadze, V. Kvatchadze, M. Darchiashvili, K. Sarajishvili, L. Rurua, T. Korkia, R. Tsiskarishvili, Boron carbide based nanocomposites with advanced mechanical properties, in: Proc. 8th Int. Conf. Exh. Adv. Nano Mater., IAEMM, Ottawa, 2021, pp.1-16.
DOI: 10.1016/j.matpr.2021.08.013
Google Scholar
[25]
L. Chkhartishvili, O. Tsagareishvili, A. Mikeladze, R. Chedia, V. Kvatchadze, V. Ugrekhelidze, Highly stable boron carbide based nanocomposites, in: O.V. Kharissova, L.M.T. Martinez, B.I. Kharisov (Eds.), Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, Springer Nature, Cham, 2021, Ch. 15, pp.327-351.
DOI: 10.1007/978-3-030-36268-3_81
Google Scholar
[26]
L. Chkhartishvili, A. Mikeladze, O. Tsagareishvili, A. Gachechiladze, A. Oakley, B. Margiev, Boron-containing nanocrystalline ceramic and metal-ceramic materials, in: Ch.M. Hussain (Ed.), Handbook of Nanomaterials for Industrial Applications, Elsevier, Amsterdam, 2018, Ch. 2, pp.13-35.
DOI: 10.1016/b978-0-12-813351-4.00002-x
Google Scholar
[27]
L. Chkhartishvili, L. Antashvili, L. Dalakishvili, R. Chedia, O. Tsagareishvili, A. Mikeladze, On modeling of synthesis process of boron carbide based nanocomposites, Condensed Matter, 6(1) (2021) 3 (1-13).
DOI: 10.3390/condmat6010003
Google Scholar
[28]
O. Tsagareishvili, A. Mikeladze, R. Chedia, L. Chkhartishvili, Method of obtaining boron carbide based hard nanocomposite materials, National Centre for Intellectual Property of Georgia Geo Patent, – Patent # GE P 2018 6709 B (2018).
Google Scholar
[29]
A. Mikeladze, O. Tsagareishvili, L. Chkhartishvili, R. Chedia, M. Darchiashvili, Production of titanium-containing metal-ceramic composites based on boron carbide in the nanocrystalline state, Adv. Appl. Ceram. 118 (2019) 196-208.
DOI: 10.1080/17436753.2019.1611088
Google Scholar
[30]
A. Mikeladze, O. Tsagareishvili, L. Chkhartishvili, R. Chedia, Obtaining of some boron containing and related nanocrystalline systems from solutions and suspensions, in: Proc. Book Int. Symp. Boron, Boren, Nevsehir, 2019, pp.181-191.
DOI: 10.4024/n27ba19a.ntp.15.03
Google Scholar
[31]
N. Barbakadze, K. Sarajishvili, R. Chedia, L. Chkhartishvili, O. Tsagareishvili, A. Mikeladze, M. Darchiashvili, V. Ugrekhelidze, Obtaining of ultrafine powders of some boron carbide based nanocomposites using liquid precursors, Nanotechnology Perceptions 15 (2019) 243-256.
DOI: 10.4024/n27ba19a.ntp.15.03
Google Scholar
[32]
L. Chkhartishvili, A. Mikeladze, R. Chedia, O. Tsagareishvili, N. Barbakadze, K. Sarajishvili, M. Darchiashvili, V. Ugrekhelidze, T. Korkia, Synthesizing fine-grained powders of complex compositions B4C–TiB2–WC–Co, Solid State Sci. 108 (2020) 106439 (1-8).
DOI: 10.1016/j.solidstatesciences.2020.106439
Google Scholar
[33]
N. Barbakadze, L. Chkhartishvili, A. Mikeladze, O. Tsagareishvili, K. Sarajishvili, T. Korkia, M. Darchiashvili, L. Rurua, N. Jalabadze, R. Chedia, Method of obtaining multicomponent fine-grained powders for boron carbide matrix ceramics production, Mater. Today Proc. https://doi.org/10.1016/j.matpr.2021.08.013 (2021) 1-9.
DOI: 10.1016/j.matpr.2021.08.013
Google Scholar
[34]
L. Silvestroni, S. Failla, N. Gilli, C. Melandri, U. Savaci, S. Turan, D. Sciti, Disclosing small scale length properties in core–shell structured B4C–TiB2 composites, Mater. & Des. 197 (2021) 109204 (1-14).
DOI: 10.1016/j.matdes.2020.109204
Google Scholar