Development of Filled Immiscible Polymers Blend Monofilaments for Water Detection in Composite

Article Preview

Abstract:

In order to avoid environmental pollution by effluents, the incorporation of electrical conductive yarns in a waterproof membrane allows detecting a leak or crack on industrial concrete structure. The membrane is made of composite materials: a glass textile structure equipped with the detector yarns and molded in an epoxy resin. The liquid’s detection and the data’s transmission depend on the yarn’s conductivity variation and its chemical and physical properties. This study aims to develop a water detector monofilament from conductive polymer composites (CPC): an immiscible polymers blend (polyamide 6.6/elastomer) filled with carbon nanotubes (CNT). The addition of elastomer in the CPC yarn is important to withstand the mechanical deformation of the resin structure without breaking. The morphology of the immiscible polymers blend and the localization of the CNT influence the electrical conductivity of the yarn and thus, its property of water detection. Two principles of water detection are investigated with this blend: the short circuit and the absorption. For the short circuit, the presence of liquid is detected when the liquid creates a conductive path between two yarns in parallel. While, the absorption principle is based on the conductivity variation with the yarn’s swelling in contact with water.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 333)

Pages:

21-29

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. A. Sahakian, U. S. Patent 5177996A. (1993).

Google Scholar

[2] Y. Goldfeld, T. Quadflieg, T. Gries, and O. Rabinovitch, Smart textile reinforcement with embedded stainless steel yarns for the detection of wetting and infiltration in TRC structures, Sensors and Actuators A: Physical, vol. 243, 2016, p.139–150.

DOI: 10.1016/j.sna.2016.02.039

Google Scholar

[3] Y. Goldfeld, O. Rabinovitch, B. Fishbain, T. Quadflieg, and T. Gries, Sensory carbon fiber based textile-reinforced concrete for smart structures, Journal of Intelligent Material Systems and Structures, vol. 27, 2016, p.469–489.

DOI: 10.1177/1045389x15571385

Google Scholar

[4] Shuai Xu, Qian Ma, Xiao-Fang Yang, and Shu-Dong Wang, Design and fabrication of a flexible woven smart fabric based highly sensitive sensor for conductive liquid leakage detection, RSC Advances (RSC Publishing) vol. 7, (2017).

DOI: 10.1039/c7ra07273b

Google Scholar

[5] L. M. Castano and A. B. Flatau, Smart fabric sensors and e-textile technologies: a review, Smart Mater. Struct. vol. 23, (2014).

DOI: 10.1088/0964-1726/23/5/053001

Google Scholar

[6] T. Pereira, P. Silva, H. Carvalho, and M. Carvalho, Textile moisture sensor matrix for monitoring of disabled and bed-rest patients, IEEE EUROCON - International Conference on Computer as a Tool, Lisbon, 2011, p.1–4.

DOI: 10.1109/eurocon.2011.5929343

Google Scholar

[7] I. Parkova, I. Ziemele, and A. Vi, Fabric Selection for Textile Moisture Sensor Design, Material Science. Textile and Clothing Technology, 2012, p.6.

Google Scholar

[8] V. Gaubert, H. Gidik, and V. Koncar, Boxer Underwear Incorporating Textile Moisture Sensor to Prevent Nocturnal Enuresis, Sensors, vol. 20, no. 12, (2020).

DOI: 10.3390/s20123546

Google Scholar

[9] M. Castro, B. Kumar, J. F. Feller, Z. Haddi, A. Amari, and B. Bouchikhi, Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors, Sensors and Actuators B: Chemical, vol. 159, 2011, p.213–219.

DOI: 10.1016/j.snb.2011.06.073

Google Scholar

[10] M. Narkis, S. Srivastava, R. Tchoudakov, and O. Breuer, Sensors for liquids based on conductive immiscible polymer blends, Synthetic Metals, vol. 113, 2000, p.29–34.

DOI: 10.1016/s0379-6779(00)00187-9

Google Scholar

[11] T. Villmow, S. Pegel, A. John, R. Rentenberger, and P. Pötschke, Liquid sensing: smart polymer/CNT composites, Materials Today, vol. 14, 2011, p.340–345.

DOI: 10.1016/s1369-7021(11)70164-x

Google Scholar

[12] T. Villmow, A. John, P. Pötschke, and G. Heinrich, Polymer/carbon nanotube composites for liquid sensing: Selectivity against different solvents, Polymer, vol. 53, 2012, p.2908–2918.

DOI: 10.1016/j.polymer.2012.04.050

Google Scholar

[13] P. A. Eutionnat-Diffo, A. Cayla, Y. Chen, J. Guan, V. Nierstrasz, and C. Campagne, Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing, Polymers, vol. 12, (2020).

DOI: 10.3390/polym12102300

Google Scholar

[14] M. Sumita, K. Sakata, S. Asai, K. Miyasaka, and H. Nakagawa, Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black,, Polymer Bulletin, vol. 25, 1991, p.265–271.

DOI: 10.1007/bf00310802

Google Scholar

[15] M. H. Al-Saleh and U. Sundararaj, An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends, Composites Part A: Applied Science and Manufacturing, vol. 39, 2008, p.284–293.

DOI: 10.1016/j.compositesa.2007.10.010

Google Scholar

[16] T. Villmow, B. Kretzschmar, and P. Pötschke, Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites, Composites Science and Technology, vol. 70, 2010, p.2045–(2055).

DOI: 10.1016/j.compscitech.2010.07.021

Google Scholar

[17] C. F. Antunes, M. van Duin, and A. V. Machado, Morphology and phase inversion of EPDM/PP blends – Effect of viscosity and elasticity, Polymer Testing, vol. 30, 2011, p.907–915.

DOI: 10.1016/j.polymertesting.2011.08.013

Google Scholar

[18] D. Bourry and B. D. Favis, Cocontinuity and phase inversion in HDPE/PS blends: Influence of interfacial modification and elasticity, Journal of Polymer Science Part B: Polymer Physics, vol. 36, 1998, p.1889–1899.

DOI: 10.1002/(sici)1099-0488(199808)36:11<1889::aid-polb10>3.0.co;2-3

Google Scholar

[19] L. Arboleda, A. Ares, M. J. Abad, A. Ferreira, P. Costa, and S. Lanceros-Mendez, Piezoresistive response of carbon nanotubes-polyamides composites processed by extrusion, J Polym Res, vol. 20, 2013, p.326.

DOI: 10.1007/s10965-013-0326-y

Google Scholar

[20] X. Guan et al., Carbon Nanotubes-Adsorbed Electrospun PA66 Nanofiber Bundles with Improved Conductivity and Robust Flexibility, ACS Appl. Mater. Interfaces, vol. 8, 2016, p.14150–14159.

DOI: 10.1021/acsami.6b02888

Google Scholar

[21] M. Javadi Toghchi et al., Electrical conductivity enhancement of hybrid PA6,6 composite containing multiwall carbon nanotube and carbon black for shielding effectiveness application in textiles, Synthetic Metals, vol. 251, 2018, p.75–84.

DOI: 10.1016/j.synthmet.2019.03.026

Google Scholar

[22] P. A. Eutionnat-Diffo, A. Cayla, Y. Chen, J. Guan, V. Nierstrasz, and C. Campagne, Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing, Polymers, vol. 12, 2020, p.2300.

DOI: 10.3390/polym12102300

Google Scholar

[23] A. L. N. Da Silva, M. I. B. Tavares, D. P. Politano, F. M. B. Coutinho, and M. C. G. Rocha, Polymer blends based on polyolefin elastomer and polypropylene, Journal of Applied Polymer Science, vol. 66, 1997, p.2005–(2014).

DOI: 10.1002/(sici)1097-4628(19971205)66:10<2005::aid-app17>3.0.co;2-2

Google Scholar

[24] Y. Xu et al., Reactive Compatibilization of Polylactide/Polypropylene Blends, Ind. Eng. Chem. Res., vol. 54, 2015, p.6108–6114.

DOI: 10.1021/acs.iecr.5b00882

Google Scholar

[25] I. Taraghi, A. Fereidoon, S. Paszkiewicz, and Z. Roslaniec, Nanocomposites based on polymer blends: enhanced interfacial interactions in polycarbonate/ethylene-propylene copolymer blends with multi-walled carbon nanotubes, Composite Interfaces, vol. 25, 2018, p.275–286.

DOI: 10.1080/09276440.2018.1393253

Google Scholar

[26] P. J. Brigandi, J. M. Cogen, and R. A. Pearson, Electrically conductive multiphase polymer blend carbon-based composites, Polymer Engineering & Science, vol. 54, 2014, p.1–16.

DOI: 10.1002/pen.23530

Google Scholar

[27] M. Azeem, A. Boughattas, J. Wiener, and A. Havelka, Mechanism of liquid water transport in fabrics; a review, 2017, p.9.

Google Scholar