Development of Actuator Networks by Means of Diagonal Arrangements of Shape Memory Alloys in Adaptive Fiber-Reinforced Plastics

Article Preview

Abstract:

Adaptive fiber-reinforced plastics (FRP) contain actuators that enable the controlled modification of system states and characteristics. The textile-technical integration of actuators, in particular shape memory alloys, into reinforcing fabrics has increasingly been applied in recent years. The objective is to achieve optimum force transmission from shape memory alloy to FRP, long-term stability of adaptive FRP as well as a maximum degree of deformation. This paper presents the development of actuator networks for adaptive FRP, where two shape memory alloys are integrated into reinforcing fabrics by means of open reed weaving technology. After infusion of the functionalized reinforcing fabrics, the deformation behavior of adaptive FRP was characterized with variable actuator switching frequencies (≥ 1 Hz) or actuator activation times (≤ 1 s).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 333)

Pages:

47-53

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Amid, A. A. A. Jeddi, M. Salehi, H. Dabiryan, R. Pejman, Investigation of circular woven composite pipes, AUTEX Res. J. 16 (2016) 100-108.

DOI: 10.1515/aut-2015-0036

Google Scholar

[2] K. Otsuka, C. M. Wayman, Shape memory materials, first ed., Cambridge University Press, Cambridge (1999).

Google Scholar

[3] A. Lai, Z. Du, C. L. Gan, C. A. Schuh, Shape memory and superelastic ceramics at small scales, Science 341 (2013) 1505–8.

DOI: 10.1126/science.1239745

Google Scholar

[4] X. Feng, G. Zhang, S. Zhuo, H. Jiang, J. Shi, F. Li, Dual responsive shape memory polymer/clay nanocomposites, Compos. Sci. Technol. 129 (2016) 53–60.

DOI: 10.1016/j.compscitech.2016.04.008

Google Scholar

[5] P. K. Kumar, C. Caer, G. Atkinson, E. Patoor, D. C. Lagoudas. The influence of stress and temperature on the residual strain generated during pseudoelastic cycling of NiTi SMA wires, Proc. SPIE 7978, Behavior and Mechanics of Multifunctional Materials and Composites 2011, 79781E (27 April 2011).

DOI: 10.1117/12.881994

Google Scholar

[6] J. M. Jani, M. Leary, A. Subic, M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des. 56 (2014) 1078–113.

DOI: 10.1016/j.matdes.2013.11.084

Google Scholar

[7] V. Michaud, Can shape memory alloy composites be smart?, Scr. Mater. 50 (2004) 249-53.

Google Scholar

[8] P. Bettini, M. Riva, G. Sala, L. D. Landro, A. Airoldi, J. Cucco, Carbon Fiber Reinforced Smart Laminates with Embedded SMA Actuators—Part I: Embedding Techniques and Interface Analysis, J. Mater. Eng. Perform. 18 (2009) 664–71.

DOI: 10.1007/s11665-009-9384-z

Google Scholar

[9] F. Boussu, G. Bailleul, Development of shape mempry alloy fabrics for composite structures. AUTEX Res. J. 2 (2002) 1–7.

Google Scholar

[10] A. Sofla, S. A. Meguid, K. T. Tan, W. K. Yeo, Shape morphing of aircraft wing: Status and challenges, Mater. Des. 31 (2010) 1284–1292.

DOI: 10.1016/j.matdes.2009.09.011

Google Scholar

[11] M. Ashir, A. Nocke, C. Cherif, Development of shape memory alloy hybrid yarns for adaptive fiber-reinforced plastics, Text. Res. J. 89 (2019) 1371–1380.

DOI: 10.1177/0040517518770678

Google Scholar

[12] M. Ashir, J. Hindahl, A. Nocke, C. Sennewald, C. Cherif, Development of adaptive pleated woven fabrics with shape memory alloys, Text. Res. J. 89 (2019) 2330–2341.

DOI: 10.1177/0040517518792736

Google Scholar

[13] M. Ashir, J. Hindahl, A. Nocke, C. Cherif, A statistical approach for the fabrication of adaptive pleated fiber reinforced plastics, Compos. Struct. 207 (2019) 537–545.

DOI: 10.1016/j.compstruct.2018.09.061

Google Scholar

[14] M. Ashir, M. Vorhof, A. Nocke, Influence of thickness ratio and integrated weft yarn column numbers in shape memory alloys on the deformation behavior of adaptive fiber-reinforced plastics, Compos. Struct. 215 (2019) 493–501.

DOI: 10.1016/j.compstruct.2019.02.081

Google Scholar

[15] M. Ashir, A. Nocke, U. Hanke, C. Cherif, Adaptive hinged fiber reinforced plastics with tailored shape memory alloy hybrid yarn, Polym. Compos. 41 (2020) 191-200.

DOI: 10.1002/pc.25359

Google Scholar

[16] M. Ashir, Activation time-and electrical power-dependent deformation behavior of adaptive fiber-reinforced plastics, J. Compos. Mater. 53 (20) 2777-2788.

DOI: 10.1177/0021998319839457

Google Scholar

[17] M. Ashir, J. Hindahl, A. Nocke, C. Cherif, Development of an adaptive morphing wing based on fiber-reinforced plastics and shape memory alloys, J. Ind. Text. 50 (2020), 114-129.

DOI: 10.1177/1528083718823295

Google Scholar

[18] M. Ashir, A. Nocke, C. Cherif, Maximum deformation of shape memory alloy based adaptive fiber-reinforced plastics, Compos. Sci. Technol. 184 (2019) 107860.

DOI: 10.1016/j.compscitech.2019.107860

Google Scholar

[19] M. Ashir, C. Cherif, Development of shape memory alloy based adaptive fiber-reinforced plastics by means of open reed weaving technology, J. Reinf. Plast. Compos. 39 (2020) 563–571.

DOI: 10.1177/0731684420920941

Google Scholar

[20] M. Ashir, A. Nocke, C. Cherif, Adaptive fiber-reinforced plastics based on open reed weaving and tailored fiber placement technology, Text. Res. J. 90 (2020) 981–990.

DOI: 10.1177/0040517519884578

Google Scholar