Melt Spinning of Elastic and Electrically Conductive Filament Yarns and their Usage as Strain Sensors

Article Preview

Abstract:

Electrically conductive fibers are required for numerous fields of application in modern textile technology. They are of particular importance in the manufacturing of smart textiles and fiber composite systems with textile-based sensor and actuator systems. Elastic and electrically conductive filaments can be used as strain sensors for monitoring the mechanical loading of critical components. In order to produce such sensorial filaments, thermoplastic polyurethane (TPU) is compounded with carbon nanotubes (CNT) and melt spun. The mechanical performances of filaments produced at different spinning speeds and containing different amounts of CNT were tested. Furthermore, the correlation between the specific electrical resistance of the filaments and the mechanical strain were analyzed depending on the CNT-content and the spinning speed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 333)

Pages:

81-89

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Wendler, A. Nocke, D. Aibibu, C. Cherif, Novel temperature sensors based on strain-relieved braiding constructions, Textile Research Journal 5 (2018) 004051751880744.

DOI: 10.1177/0040517518807445

Google Scholar

[2] I. Jerkovic, V. Koncar, A.M. Grancaric, New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex, Sensors (Basel, Switzerland) 17 (2017).

DOI: 10.3390/s17102297

Google Scholar

[3] W.A. Hufenbach, P. Kostka, B. Maron, D. Weck, J. Ehlig, M. Gude, M. Zscheyge, Development and Investigation of a Textile-reinforced Thermoplastic Leaf Spring with Integrated Sensor Networks, Procedia Materials Science 2 (2013) 173–180.

DOI: 10.1016/j.mspro.2013.02.021

Google Scholar

[4] A. Nocke, A. Schröter, C. Cherif, G. Gerlach, Miniaturized textile-based multi-layer ph-sensor for wound monitoring applications, Autex Research Journal 12 (2012) 20–22.

DOI: 10.2478/v10304-012-0004-x

Google Scholar

[5] P. Lugoda, T. Hughes-Riley, R. Morris, T. Dias, A Wearable Textile Thermograph, Sensors (Basel, Switzerland) 18 (2018).

DOI: 10.3390/s18072369

Google Scholar

[6] E. Haentzsche, T. Onggar, A. Nocke, R.D. Hund, C. Cherif, Multi-layered sensor yarns for in situ monitoring of textile reinforced composites, IOP Conf. Ser.: Mater. Sci. Eng. 254 (2017) 42012.

DOI: 10.1088/1757-899x/254/4/042012

Google Scholar

[7] K. Bremer, F. Weigand, Y. Zheng, L.S. Alwis, R. Helbig, B. Roth, Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors, Sensors (Basel, Switzerland) 17 (2017).

DOI: 10.3390/s17020345

Google Scholar

[8] J.S. Heo, J. Eom, Y.-H. Kim, S.K. Park, Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications, Small (Weinheim an der Bergstrasse, Germany) 14 (2018).

DOI: 10.1002/smll.201703034

Google Scholar

[9] B. Wang, A. Facchetti, Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices, Advanced materials (Deerfield Beach, Fla.) 31 (2019) e1901408.

DOI: 10.1002/adma.201901408

Google Scholar

[10] V. Koncar (Ed.), Smart Textiles and their Applications, Woodhead Publishing, Oxford, (2016).

Google Scholar

[11] R.R. Ruckdashel, D. Venkataraman, J.H. Park, Smart textiles: A toolkit to fashion the future, Journal of Applied Physics 129 (2021) 130903.

DOI: 10.1063/5.0024006

Google Scholar

[12] A. Issatayeva, A. Beisenova, D. Tosi, C. Molardi, Fiber-Optic Based Smart Textiles for Real-Time Monitoring of Breathing Rate, Sensors (Basel, Switzerland) 20 (2020).

DOI: 10.3390/s20123408

Google Scholar

[13] E.-F.M. Henke, S. Schlatter, I.A. Anderson, Soft Dielectric Elastomer Oscillators Driving Bioinspired Robots, Soft robotics 4 (2017) 353–366.

DOI: 10.1089/soro.2017.0022

Google Scholar

[14] D. Rus, M.T. Tolley, Design, fabrication and control of soft robots, Nature 521 (2015) 467–475.

DOI: 10.1038/nature14543

Google Scholar

[15] A. Satharasinghe, T. Hughes-Riley, T. Dias, Photodiode and LED embedded textiles for waerable healthcare applications, Ghent, (2019).

Google Scholar

[16] E. Haentzsche, R. Mueller, M. Huebner, T. Ruder, R. Unger, A. Nocke, C. Cherif, Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine blades, Smart Mater. Struct. 25 (2016) 105012.

DOI: 10.1088/0964-1726/25/10/105012

Google Scholar

[17] T. Onggar, G. Amrhein, A. Abdkader, R.-D. Hund, C. Cherif, Wet-chemical method for the metallization of a para-aramid filament yarn wound on a cylindrical dyeing package, Textile Research Journal 87 (2017) 1192–1202.

DOI: 10.1177/0040517516651099

Google Scholar

[18] S. Qin, S. Seyedin, J. Zhang, Z. Wang, F. Yang, Y. Liu, J. Chen, J.M. Razal, Elastic Fiber Supercapacitors for Wearable Energy Storage, Macromolecular rapid communications 39 (2018) e1800103.

DOI: 10.1002/marc.201800103

Google Scholar

[19] Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, A Highly Stretchable, Fiber-Shaped Supercapacitor, Angew. Chem. 125 (2013) 13695–13699.

DOI: 10.1002/ange.201307619

Google Scholar

[20] C. Cao, S. Burgess, A.T. Conn, Toward a Dielectric Elastomer Resonator Driven Flapping Wing Micro Air Vehicle, Front. Robot. AI 5 (2019) 263.

DOI: 10.3389/frobt.2018.00137

Google Scholar

[21] Z. Yang, Z. Zhai, Z. Song, Y. Wu, J. Liang, Y. Shan, J. Zheng, H. Liang, H. Jiang, Conductive and Elastic 3D Helical Fibers for Use in Washable and Wearable Electronics, Advanced materials (Deerfield Beach, Fla.) 32 (2020) e1907495.

DOI: 10.1002/adma.202070076

Google Scholar

[22] Information on https://solutions.covestro.com/en/products/desmopan/desmopan-9370a-gmp_84876836-05124172?SelectedCountry=DE.

Google Scholar

[23] Information on https://www.nanocyl.com/product/plasticyl-pp.2001-2/.

Google Scholar

[24] H. Probst, K. Katzer, A. Nocke, R. Hickmann, M. Zimmermann, C. Cherif, Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns, Polymers 13 (2021) 590.

DOI: 10.3390/polym13040590

Google Scholar

[25] J. Mersch, H. Probst, A. Nocke, C. Cherif, G. Gerlach, Non-Monotonic Sensor Behavior of Carbon Particle-Filled Textile Strain Sensors, Soft robotics 1 (2021).

DOI: 10.3390/i3s2021dresden-10140

Google Scholar

[26] J. Mersch, H. Winger, A. Nocke, C. Cherif, G. Gerlach, Experimental Investigation and Modeling of the Dynamic Resistance Response of Carbon Particle‐Filled Polymers, Macromol. Mater. Eng. 305 (2020) 2000361.

DOI: 10.1002/mame.202000361

Google Scholar

[27] T. Hua, N.S. Wong, W.M. Tang, Study on properties of elastic core-spun yarns containing a mix of spandex and PET/PTT bi-component filament as core, Textile Research Journal 88 (2018) 1065–1076.

DOI: 10.1177/0040517517693982

Google Scholar

[28] Wacker Chemie AG, Powersil 464 A/B: Electrically Conductive Liquid Rubber (2020).

Google Scholar