Polymer/CNT Composites and Filaments for Smart Textiles: Melt Mixing of Composites

Article Preview

Abstract:

Textile products are of great importance in the dissemination of newly developed communication devices and flexible electronics in conjunction with the advantages of covering the entire human body and being used all day long by all individuals in society. Various approaches have been developed to ensure the required electrical conductivity of textiles. Our research deals with melt spinning of carbon nanomaterial-based composites (CNCs) into electrically conductive filaments. By combining the various composite structures and property profiles with a conductive filler at high concentration, specific morphological structures can be achieved that offer a much higher potential for the development of new functional fibers for different smart textile applications.This study aims to produce nanocomposites from polyamide 6 (PA6) and polyethylene (PE) matrices with single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) by using a small-scale mixing device that provides short mixing time, and material savings in the first stage of the research.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 333)

Pages:

91-96

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Electronic Textiles: Elsevier, (2015).

Google Scholar

[2] A.K. Yetisen, H. Qu, A. Manbachi, H. Butt, M. R. Domeci, J. P. Hinestroza, S. H. Yun,. Nanotechnology in textiles. ACS nano (2016), 10(3), 3042-3068.

DOI: 10.1021/acsnano.5b08176

Google Scholar

[3] Myant, Vision Page – DW Page Updated - Myant. [Online]. Available: https://​myant.ca​/​vision-​page-​dw-​page-​updated/​ (accessed: Oct. 14 2021).

Google Scholar

[4] S. Park, S. Jayaraman, Smart Textiles: Wearable Electronic Systems,, MRAS Bulletin (2003), vol. 28, no. 8, p.585–591,.

DOI: 10.1557/mrs2003.170

Google Scholar

[5] E. Nilsson, M. Rigdahl, B. Hagström, Electrically conductive polymeric bi-component fibers containing a high load of low-structured carbon black,, J. Appl. Polym. Sci. (2015), vol. 132, no. 29,.

DOI: 10.1002/app.42255

Google Scholar

[6] C. R. Cork, Conductive fibres for electronic textiles,, in Electronic Textiles: Elsevier (2015), p.3–20.

DOI: 10.1016/b978-0-08-100201-8.00002-3

Google Scholar

[7] M. Kaplan, Hybrid Yarns For Thermoplastic Composites: Manufacturing Methods and Properties,, Tekstil ve Mühendis (2016), vol. 23, no. 101, p.61–79,.

DOI: 10.7216/1300759920162310106

Google Scholar

[8] A. Bedeloglu, N. Sunter, B. Yildirim, and Y. Bozkurt, Bending and tensile properties of cotton/metal wire complex yarns produced for electromagnetic shielding and conductivity applications,, Journal of The Textile Institute (2012), vol. 103, no. 12, p.1304–1311,.

DOI: 10.1080/00405000.2012.677568

Google Scholar

[9] A. M. Grancarić, I. Jerković, V. Koncar, C. Cochrane, F. M. Kelly, D. Soulat, X. Legrand,. Conductive polymers for smart textile applications. Journal of Industrial Textiles (2018), 48(3), 612-642.

DOI: 10.1177/1528083717699368

Google Scholar

[10] Y. Zhang, H. Wang, H. Lu, S. Li, and Y. Zhang, Electronic fibers and textiles: Recent progress and perspective,, iScience (2021), vol. 24, no. 7, p.102716,.

DOI: 10.1016/j.isci.2021.102716

Google Scholar

[11] İ. Borazan, M. Kaplan, and B. M. Üzümcü, Eds., Utilization of Metallic Fibers In Textiles, International Congress of Innovative Textiles. (2019).

Google Scholar

[12] J. Slade, M. Agpaoa-Kraus, J. Bowman, A. Riecker, T. Tiano, C. Carey, P. Wilson, Washing of electrotextiles. MRS Online Proceedings Library (OPL) (2002)., 736.

DOI: 10.1557/proc-736-d3.1

Google Scholar

[13] C. O. Baker, X. Huang, W. Nelson, and R. B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers,, Chemical Society reviews (2017), vol. 46, no. 5, p.1510–1525,.

DOI: 10.1039/c6cs00555a

Google Scholar

[14] L. Jingcheng, V. S. Reddy, W. A. D. M. Jayathilaka, A. Chinnappan, S. Ramakrishna, and R. Ghosh, Intelligent Polymers, Fibers and Applications,, Polymers (2021), vol. 13, no. 9,.

DOI: 10.3390/polym13091427

Google Scholar

[15] B. Krause, C. Barbier, J. Levente, M. Klaus, and P. Pötschke, Screening of Different Carbon Nanotubes in Melt-Mixed Polymer Composites with Different Polymer Matrices for Their Thermoelectrical Properties,, J. Compos. Sci. (2019), vol. 3, no. 4, p.106,.

DOI: 10.3390/jcs3040106

Google Scholar

[16] W. Khan, R. Sharma, and P. Saini, Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications,, in Carbon Nanotubes - Current Progress of their Polymer Composites (2016), M. R. Berber and I. H. Hafez, Eds.: InTech.

DOI: 10.5772/62497

Google Scholar

[17] B. Krause, C. Barbier, K. Kunz, and P. Pötschke, Comparative study of singlewalled, multiwalled, and branched carbon nanotubes melt mixed in different thermoplastic matrices,, Polymer (2018), vol. 159, p.75–85,.

DOI: 10.1016/j.polymer.2018.11.010

Google Scholar

[18] B. Krause, R. Boldt, L. Häußler, and P. Pötschke, Ultralow percolation threshold in polyamide 6.6/MWCNT composites,, Composites Science and Technology (2015), vol. 114, p.119–125,.

DOI: 10.1016/j.compscitech.2015.03.014

Google Scholar

[19] J. R. Bautista-Quijano, Mechanical, electrical and sensing properties of melt-spun polymer fibers filled with carbon nanoparticles,, PhD, Der Fakultät Maschinenwesen, Technischen Universität Dresden, Dresden, Germany, (2018).

Google Scholar

[20] B. A. Weise, K. G. Wirth, L. Völkel, M. Morgenstern, and G. Seide, Pilot-scale fabrication and analysis of graphene-nanocomposite fibers,, Carbon (2019), vol. 144, p.351–361,.

DOI: 10.1016/j.carbon.2018.12.042

Google Scholar